Anime_Images_Style_Embedder / gallery_review.py
Fgdfgfthgr's picture
Update gallery_review.py
da8234d verified
import os
import torch
import numpy as np
import lightning.pytorch as pl
import gradio as gr
import imageio
import random
import matplotlib.pyplot as plt
import cv2
import skdim
from torch.utils.data import Dataset, DataLoader
from PIL import Image
from matplotlib import cm
from safetensors.torch import save_file, load_file
from sklearn.cluster import AgglomerativeClustering
from sklearn.manifold import TSNE
from sklearn.neighbors import KDTree
from sklearn.preprocessing import StandardScaler
from minimal_script import EmbeddingNetwork, closest_interval, adj_size, PLModule
class PredictDataset(Dataset):
def __init__(self, data_dir, sample=None):
self.image_paths = []
extensions = ('jpg', 'jpeg', 'png', 'tif', 'webp')
for fname in sorted(os.listdir(data_dir)):
if any(fname.lower().endswith(ext) for ext in extensions):
self.image_paths.append(os.path.join(data_dir, fname))
if sample:
self.image_paths = random.sample(self.image_paths, sample)
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
path = self.image_paths[idx]
image = imageio.v3.imread(path).copy()
image = torch.from_numpy(image).permute(2, 0, 1)
processed = closest_interval(adj_size(image, 1024))
processed = 2*(processed/255)-1
return processed.detach(), path
def explore_embedding_space(embeddings, image_paths, model):
"""
Create an interface for exploring N-dimensional image embeddings
Args:
embeddings: NumPy array of shape [B, N]
image_paths: List of B image file paths
"""
# Validate inputs
assert len(embeddings) == len(image_paths), "Mismatch between embeddings and image paths"
assert embeddings.ndim == 2, "Embeddings should be 2-dimensional"
# Precompute min/max for each dimension
min_vals = embeddings.min(axis=0)
max_vals = embeddings.max(axis=0)
ranges = max_vals - min_vals
# Build KDTree for efficient nearest neighbor search
tree = KDTree(embeddings)
# Create initial point (mean of embeddings)
initial_point = embeddings.mean(axis=0).tolist()
# Create slider components for each dimension
sliders = []
for i in range(embeddings.shape[1]):
slider = gr.Slider(
float(min_vals[i]),
float(max_vals[i]),
value=float(initial_point[i]),
step=float(ranges[i]) / 100,
label=f"Dimension {i + 1}"
)
sliders.append(slider)
def compute_gradient_heatmap(image_path):
"""Compute gradient heatmap for an image"""
# Load and preprocess image
img = imageio.v3.imread(image_path).copy()
img = torch.from_numpy(img).permute(2, 0, 1)
img_tensor = closest_interval(adj_size(img, 1024)).unsqueeze(0)
img_tensor = 2*(img_tensor/255)-1
img_tensor.requires_grad_(True)
# Move to GPU if available
device = 'cuda' if torch.cuda.is_available() else 'cpu'
img_tensor = img_tensor.to(device).to(torch.float16)
# Compute embedding and gradient
with torch.enable_grad():
embd = model(img_tensor)
norm = embd.norm(p=2, dim=1).sum()
grad = torch.autograd.grad(norm, img_tensor, retain_graph=False)[0]
# Compute gradient magnitude
grad_mag = grad.squeeze(0).norm(dim=0).detach().cpu().numpy()
# Normalize and apply colormap
grad_min, grad_max = grad_mag.min(), grad_mag.max()
if grad_max > grad_min:
grad_norm = (grad_mag - grad_min) / (grad_max - grad_min)
else:
grad_norm = grad_mag * 0 # Handle uniform case
heatmap = cm.jet(grad_norm)[..., :3] # Use jet colormap
return heatmap
def overlay_heatmap(original_img, heatmap, alpha=0.4):
"""Overlay heatmap on original image"""
# Resize heatmap to match original image
heatmap_img = Image.fromarray((heatmap * 255).astype(np.uint8))
heatmap_img = heatmap_img.resize(original_img.size)
# Convert original to RGBA and heatmap to RGBA
#original_rgba = original_img.convert("RGBA")
#heatmap_rgba = heatmap_img.convert("RGBA")
# Blend images
blended = Image.blend(original_img, heatmap_img, alpha)
return blended
def get_overlay_image(image_path):
"""Get image with gradient overlay"""
img = Image.open(image_path).convert('RGB')
#heatmap = compute_gradient_heatmap(image_path)
#return overlay_heatmap(img, heatmap)
return img
def add_caption_to_image(image, caption):
"""Add text caption to the bottom of an image"""
# Convert to OpenCV format
if isinstance(image, Image.Image):
img = np.array(image)
else:
img = image.copy()
# Add black bar at bottom
bar_height = 30
img = cv2.copyMakeBorder(img, 0, bar_height, 0, 0, cv2.BORDER_CONSTANT, value=[0, 0, 0])
# Add white text
font = cv2.FONT_HERSHEY_SIMPLEX
text_size = cv2.getTextSize(caption, font, 0.5, 1)[0]
text_x = (img.shape[1] - text_size[0]) // 2
text_y = img.shape[0] - 10
cv2.putText(img, caption, (text_x, text_y), font, 0.5, (255, 255, 255), 1)
return Image.fromarray(img)
# Function to find nearby images
def find_nearby_images(*point):
point = np.array(point).reshape(1, -1)
distances, indices = tree.query(point, k=8)
indices = indices[0]
distances = distances[0]
# Get paths and create overlay images
paths = [image_paths[i] for i in indices]
images_with_gradients = [get_overlay_image(p) for p in paths]
# Create images with baked-in captions
final_images = []
for img, dist in zip(images_with_gradients, distances):
caption = f"Dist: {dist:.2f}"
final_img = add_caption_to_image(img, caption)
final_images.append(final_img)
warning = ""
if distances[0] > 5.0: # Warn if nearest image is far
warning = "⚠️ Nearest image is far (distance={:.2f}). Consider adjusting sliders.".format(distances[0])
return final_images, warning
# Build interface
with gr.Blocks() as demo:
gr.Markdown("## N-Dimensional Embedding Space Explorer")
gr.Markdown("Adjust sliders to navigate. Images show gradient of embedding norm w.r.t. input.")
# Warning output
warning = gr.Textbox(label="Status", interactive=False)
# Gallery for images
gallery = gr.Gallery(
label="Nearest Images (Distance Ordered)",
columns=4,
object_fit="contain",
height="auto",
show_label=True,
)
# Create sliders in a compact row
with gr.Row():
for slider in sliders:
slider.render()
# Connect slider changes to update function
for slider in sliders:
slider.change(
find_nearby_images,
inputs=sliders,
outputs=[gallery, warning]
)
# Initial trigger
demo.load(
find_nearby_images,
inputs=sliders,
outputs=[gallery, warning]
)
return demo
def generate_embeddings(image_folder, mode, model):
predict_dataset = PredictDataset(image_folder, 5000)
predict_loader = DataLoader(predict_dataset, batch_size=1, num_workers=5, pin_memory=True)
trainer = pl.Trainer(accelerator="gpu", logger=False, enable_checkpointing=False, precision="16-mixed")
predictions_0 = trainer.predict(model, predict_loader)
predictions = torch.cat([pred[0] for pred in predictions_0], dim=0).numpy()
paths = []
for pred in predictions_0:
for i in pred[1]:
paths.append(i)
if mode == 'Grouping':
#estimate global intrinsic dimension
#scaler = StandardScaler()
#normalised_predictions = scaler.fit_transform(predictions)
# Initialize estimators
estimators = [skdim.id.TwoNN(), skdim.id.CorrInt(), skdim.id.DANCo()]
results = {}
for est in estimators:
est.fit(predictions)
results[type(est).__name__] = est.dimension_
print("Intrinsic Dimension Estimates:")
for name, dim in results.items():
print(f"{name}: {dim:.2f}")
labels = cluster_embeddings(predictions)
row_norms = np.linalg.norm(predictions, axis=1)
average_norms = np.mean(np.abs(predictions), axis=0)
plt.figure(figsize=(8, 5))
plt.bar(range(predictions.shape[1]), average_norms, color='skyblue')
plt.xlabel('Feature Index (C)')
plt.ylabel('Average Norm')
plt.title(f'Average Norm for Each Feature (Column)')
plt.xticks(range(predictions.shape[1]))
#plt.show()
plt.savefig('Norms.png')
plt.figure(figsize=(8, 6))
tsne = TSNE(n_components=2, random_state=42)
reduced_data = tsne.fit_transform(predictions)
plt.scatter(reduced_data[:, 0], reduced_data[:, 1], c=row_norms, cmap='viridis', s=50, edgecolor='k', label="Data Points")
plt.colorbar(label='Norm Value')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title(f'Scatter Plot of Data Points and Average Norm')
plt.legend()
plt.grid(True)
plt.axis('equal')
#plt.show()
plt.savefig('Groups.png')
# List unique clusters
unique_clusters = np.unique(labels)
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## Explore Image Clusters by Style")
# Dropdown for selecting a cluster
cluster_selector = gr.Dropdown(choices=unique_clusters.tolist(), label="Select Cluster to Explore")
# Gallery to display images
image_gallery = gr.Gallery(label="Sample Images from Selected Cluster")
# Gradio Interface for Cluster Exploration
def explore_clusters(cluster_idx):
# Find images that belong to the selected cluster
cluster_images = [paths[i] for i in range(len(labels)) if labels[i] == cluster_idx]
# Load and return images
images = [Image.open(img_path) for img_path in cluster_images[:50]] # Show a sample of 50 images
return images
# Update function for the gallery
cluster_selector.change(fn=explore_clusters, inputs=cluster_selector, outputs=image_gallery)
demo.launch()
elif mode == 'Explore':
demo = explore_embedding_space(predictions, paths, model.to('cuda').to(torch.float16))
demo.launch()
# Apply Agglomerative Clustering
def cluster_embeddings(predictions, distance_threshold=32.0):
agg_clustering = AgglomerativeClustering(
n_clusters=None,
distance_threshold=distance_threshold,
linkage='ward'
)
labels = agg_clustering.fit_predict(predictions)
return labels
if __name__ == '__main__':
folder = 'Enter Images folder name here'
#folder = 'images_for_style_embedding'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = PLModule()
state_dict = load_file("Style_Embedder_v3.safetensors")
model.network.load_state_dict(state_dict)
# 'Grouping' or 'Explore'
generate_embeddings(folder, 'Grouping', model)