File size: 11,595 Bytes
51fedf6 c4fbd39 51fedf6 6df49f3 51fedf6 c4fbd39 51fedf6 6df49f3 51fedf6 a10ced8 51fedf6 a10ced8 51fedf6 6df49f3 51fedf6 6df49f3 51fedf6 c4fbd39 51fedf6 c4fbd39 51fedf6 6df49f3 51fedf6 c4fbd39 51fedf6 6df49f3 51fedf6 6df49f3 51fedf6 6df49f3 51fedf6 6df49f3 51fedf6 c4fbd39 51fedf6 6df49f3 da8234d 6df49f3 51fedf6 c4fbd39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import os
import torch
import numpy as np
import lightning.pytorch as pl
import gradio as gr
import imageio
import random
import matplotlib.pyplot as plt
import cv2
import skdim
from torch.utils.data import Dataset, DataLoader
from PIL import Image
from matplotlib import cm
from safetensors.torch import save_file, load_file
from sklearn.cluster import AgglomerativeClustering
from sklearn.manifold import TSNE
from sklearn.neighbors import KDTree
from sklearn.preprocessing import StandardScaler
from minimal_script import EmbeddingNetwork, closest_interval, adj_size, PLModule
class PredictDataset(Dataset):
def __init__(self, data_dir, sample=None):
self.image_paths = []
extensions = ('jpg', 'jpeg', 'png', 'tif', 'webp')
for fname in sorted(os.listdir(data_dir)):
if any(fname.lower().endswith(ext) for ext in extensions):
self.image_paths.append(os.path.join(data_dir, fname))
if sample:
self.image_paths = random.sample(self.image_paths, sample)
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
path = self.image_paths[idx]
image = imageio.v3.imread(path).copy()
image = torch.from_numpy(image).permute(2, 0, 1)
processed = closest_interval(adj_size(image, 1024))
processed = 2*(processed/255)-1
return processed.detach(), path
def explore_embedding_space(embeddings, image_paths, model):
"""
Create an interface for exploring N-dimensional image embeddings
Args:
embeddings: NumPy array of shape [B, N]
image_paths: List of B image file paths
"""
# Validate inputs
assert len(embeddings) == len(image_paths), "Mismatch between embeddings and image paths"
assert embeddings.ndim == 2, "Embeddings should be 2-dimensional"
# Precompute min/max for each dimension
min_vals = embeddings.min(axis=0)
max_vals = embeddings.max(axis=0)
ranges = max_vals - min_vals
# Build KDTree for efficient nearest neighbor search
tree = KDTree(embeddings)
# Create initial point (mean of embeddings)
initial_point = embeddings.mean(axis=0).tolist()
# Create slider components for each dimension
sliders = []
for i in range(embeddings.shape[1]):
slider = gr.Slider(
float(min_vals[i]),
float(max_vals[i]),
value=float(initial_point[i]),
step=float(ranges[i]) / 100,
label=f"Dimension {i + 1}"
)
sliders.append(slider)
def compute_gradient_heatmap(image_path):
"""Compute gradient heatmap for an image"""
# Load and preprocess image
img = imageio.v3.imread(image_path).copy()
img = torch.from_numpy(img).permute(2, 0, 1)
img_tensor = closest_interval(adj_size(img, 1024)).unsqueeze(0)
img_tensor = 2*(img_tensor/255)-1
img_tensor.requires_grad_(True)
# Move to GPU if available
device = 'cuda' if torch.cuda.is_available() else 'cpu'
img_tensor = img_tensor.to(device).to(torch.float16)
# Compute embedding and gradient
with torch.enable_grad():
embd = model(img_tensor)
norm = embd.norm(p=2, dim=1).sum()
grad = torch.autograd.grad(norm, img_tensor, retain_graph=False)[0]
# Compute gradient magnitude
grad_mag = grad.squeeze(0).norm(dim=0).detach().cpu().numpy()
# Normalize and apply colormap
grad_min, grad_max = grad_mag.min(), grad_mag.max()
if grad_max > grad_min:
grad_norm = (grad_mag - grad_min) / (grad_max - grad_min)
else:
grad_norm = grad_mag * 0 # Handle uniform case
heatmap = cm.jet(grad_norm)[..., :3] # Use jet colormap
return heatmap
def overlay_heatmap(original_img, heatmap, alpha=0.4):
"""Overlay heatmap on original image"""
# Resize heatmap to match original image
heatmap_img = Image.fromarray((heatmap * 255).astype(np.uint8))
heatmap_img = heatmap_img.resize(original_img.size)
# Convert original to RGBA and heatmap to RGBA
#original_rgba = original_img.convert("RGBA")
#heatmap_rgba = heatmap_img.convert("RGBA")
# Blend images
blended = Image.blend(original_img, heatmap_img, alpha)
return blended
def get_overlay_image(image_path):
"""Get image with gradient overlay"""
img = Image.open(image_path).convert('RGB')
#heatmap = compute_gradient_heatmap(image_path)
#return overlay_heatmap(img, heatmap)
return img
def add_caption_to_image(image, caption):
"""Add text caption to the bottom of an image"""
# Convert to OpenCV format
if isinstance(image, Image.Image):
img = np.array(image)
else:
img = image.copy()
# Add black bar at bottom
bar_height = 30
img = cv2.copyMakeBorder(img, 0, bar_height, 0, 0, cv2.BORDER_CONSTANT, value=[0, 0, 0])
# Add white text
font = cv2.FONT_HERSHEY_SIMPLEX
text_size = cv2.getTextSize(caption, font, 0.5, 1)[0]
text_x = (img.shape[1] - text_size[0]) // 2
text_y = img.shape[0] - 10
cv2.putText(img, caption, (text_x, text_y), font, 0.5, (255, 255, 255), 1)
return Image.fromarray(img)
# Function to find nearby images
def find_nearby_images(*point):
point = np.array(point).reshape(1, -1)
distances, indices = tree.query(point, k=8)
indices = indices[0]
distances = distances[0]
# Get paths and create overlay images
paths = [image_paths[i] for i in indices]
images_with_gradients = [get_overlay_image(p) for p in paths]
# Create images with baked-in captions
final_images = []
for img, dist in zip(images_with_gradients, distances):
caption = f"Dist: {dist:.2f}"
final_img = add_caption_to_image(img, caption)
final_images.append(final_img)
warning = ""
if distances[0] > 5.0: # Warn if nearest image is far
warning = "⚠️ Nearest image is far (distance={:.2f}). Consider adjusting sliders.".format(distances[0])
return final_images, warning
# Build interface
with gr.Blocks() as demo:
gr.Markdown("## N-Dimensional Embedding Space Explorer")
gr.Markdown("Adjust sliders to navigate. Images show gradient of embedding norm w.r.t. input.")
# Warning output
warning = gr.Textbox(label="Status", interactive=False)
# Gallery for images
gallery = gr.Gallery(
label="Nearest Images (Distance Ordered)",
columns=4,
object_fit="contain",
height="auto",
show_label=True,
)
# Create sliders in a compact row
with gr.Row():
for slider in sliders:
slider.render()
# Connect slider changes to update function
for slider in sliders:
slider.change(
find_nearby_images,
inputs=sliders,
outputs=[gallery, warning]
)
# Initial trigger
demo.load(
find_nearby_images,
inputs=sliders,
outputs=[gallery, warning]
)
return demo
def generate_embeddings(image_folder, mode, model):
predict_dataset = PredictDataset(image_folder, 5000)
predict_loader = DataLoader(predict_dataset, batch_size=1, num_workers=5, pin_memory=True)
trainer = pl.Trainer(accelerator="gpu", logger=False, enable_checkpointing=False, precision="16-mixed")
predictions_0 = trainer.predict(model, predict_loader)
predictions = torch.cat([pred[0] for pred in predictions_0], dim=0).numpy()
paths = []
for pred in predictions_0:
for i in pred[1]:
paths.append(i)
if mode == 'Grouping':
#estimate global intrinsic dimension
#scaler = StandardScaler()
#normalised_predictions = scaler.fit_transform(predictions)
# Initialize estimators
estimators = [skdim.id.TwoNN(), skdim.id.CorrInt(), skdim.id.DANCo()]
results = {}
for est in estimators:
est.fit(predictions)
results[type(est).__name__] = est.dimension_
print("Intrinsic Dimension Estimates:")
for name, dim in results.items():
print(f"{name}: {dim:.2f}")
labels = cluster_embeddings(predictions)
row_norms = np.linalg.norm(predictions, axis=1)
average_norms = np.mean(np.abs(predictions), axis=0)
plt.figure(figsize=(8, 5))
plt.bar(range(predictions.shape[1]), average_norms, color='skyblue')
plt.xlabel('Feature Index (C)')
plt.ylabel('Average Norm')
plt.title(f'Average Norm for Each Feature (Column)')
plt.xticks(range(predictions.shape[1]))
#plt.show()
plt.savefig('Norms.png')
plt.figure(figsize=(8, 6))
tsne = TSNE(n_components=2, random_state=42)
reduced_data = tsne.fit_transform(predictions)
plt.scatter(reduced_data[:, 0], reduced_data[:, 1], c=row_norms, cmap='viridis', s=50, edgecolor='k', label="Data Points")
plt.colorbar(label='Norm Value')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title(f'Scatter Plot of Data Points and Average Norm')
plt.legend()
plt.grid(True)
plt.axis('equal')
#plt.show()
plt.savefig('Groups.png')
# List unique clusters
unique_clusters = np.unique(labels)
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## Explore Image Clusters by Style")
# Dropdown for selecting a cluster
cluster_selector = gr.Dropdown(choices=unique_clusters.tolist(), label="Select Cluster to Explore")
# Gallery to display images
image_gallery = gr.Gallery(label="Sample Images from Selected Cluster")
# Gradio Interface for Cluster Exploration
def explore_clusters(cluster_idx):
# Find images that belong to the selected cluster
cluster_images = [paths[i] for i in range(len(labels)) if labels[i] == cluster_idx]
# Load and return images
images = [Image.open(img_path) for img_path in cluster_images[:50]] # Show a sample of 50 images
return images
# Update function for the gallery
cluster_selector.change(fn=explore_clusters, inputs=cluster_selector, outputs=image_gallery)
demo.launch()
elif mode == 'Explore':
demo = explore_embedding_space(predictions, paths, model.to('cuda').to(torch.float16))
demo.launch()
# Apply Agglomerative Clustering
def cluster_embeddings(predictions, distance_threshold=32.0):
agg_clustering = AgglomerativeClustering(
n_clusters=None,
distance_threshold=distance_threshold,
linkage='ward'
)
labels = agg_clustering.fit_predict(predictions)
return labels
if __name__ == '__main__':
folder = 'Enter Images folder name here'
#folder = 'images_for_style_embedding'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = PLModule()
state_dict = load_file("Style_Embedder_v3.safetensors")
model.network.load_state_dict(state_dict)
# 'Grouping' or 'Explore'
generate_embeddings(folder, 'Grouping', model)
|