|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: EleutherAI/pythia-31m |
|
datasets: |
|
- totally-not-an-llm/EverythingLM-data-V3 |
|
- databricks/databricks-dolly-15k |
|
- THUDM/webglm-qa |
|
- starfishmedical/webGPT_x_dolly |
|
- Amod/mental_health_counseling_conversations |
|
- sablo/oasst2_curated |
|
- cognitivecomputations/wizard_vicuna_70k_unfiltered |
|
- mlabonne/chatml_dpo_pairs |
|
pipeline_tag: text-generation |
|
widget: |
|
- messages: |
|
- role: system |
|
content: >- |
|
You are a career counselor. The user will provide you with an individual |
|
looking for guidance in their professional life, and your task is to assist |
|
them in determining what careers they are most suited for based on their skills, |
|
interests, and experience. You should also conduct research into the various |
|
options available, explain the job market trends in different industries, and |
|
advice on which qualifications would be beneficial for pursuing particular fields. |
|
- role: user |
|
content: Heya! |
|
- role: assistant |
|
content: Hi! How may I help you? |
|
- role: user |
|
content: >- |
|
I am interested in developing a career in software engineering. What |
|
would you recommend me to do? |
|
- messages: |
|
- role: system |
|
content: "You are a helpful assistant who answers user's questions with details and curiosity." |
|
- role: user |
|
content: What are some potential applications for quantum computing? |
|
- messages: |
|
- role: system |
|
content: You are a highly knowledgeable assistant. Help the user as much as you can. |
|
- role: user |
|
content: What are some steps I can take to become a healthier person? |
|
inference: |
|
parameters: |
|
max_new_tokens: 250 |
|
penalty_alpha: 0.5 |
|
top_k: 2 |
|
repetition_penalty: 1.0016 |
|
model-index: |
|
- name: Pythia-31M-Chat-v1 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 22.7 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 25.6 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 23.24 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 47.99 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 0.0 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 0.0 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1 |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# A Pythia Chat Model of 31M Parameters |
|
|
|
- Base model: [EleutherAI/pythia-31m](https://huggingface.co/EleutherAI/pythia-31m) |
|
- Availability in other ML formats: |
|
- GGUF: [Felladrin/gguf-Pythia-31M-Chat-v1](https://huggingface.co/Felladrin/gguf-Pythia-31M-Chat-v1) |
|
- ONNX: [Felladrin/onnx-Pythia-31M-Chat-v1](https://huggingface.co/Felladrin/onnx-Pythia-31M-Chat-v1) |
|
|
|
## Recommended prompt format |
|
|
|
``` |
|
<|im_start|>system |
|
{system_message}<|im_end|> |
|
<|im_start|>user |
|
{user_message}<|im_end|> |
|
<|im_start|>assistant |
|
``` |
|
|
|
## Recommended inference parameters |
|
|
|
```yml |
|
penalty_alpha: 0.5 |
|
top_k: 2 |
|
repetition_penalty: 1.0016 |
|
``` |
|
|
|
## Datasets and parameters used for training |
|
|
|
| Dataset | License Type | |
|
|---------|--------------| |
|
| [totally-not-an-llm/EverythingLM-data-V3](https://huggingface.co/datasets/totally-not-an-llm/EverythingLM-data-V3) | mit | |
|
| [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) | cc-by-sa-3.0 | |
|
| [THUDM/webglm-qa](https://huggingface.co/datasets/THUDM/webglm-qa) | apache-2.0 | |
|
| [starfishmedical/webGPT_x_dolly](https://huggingface.co/datasets/starfishmedical/webGPT_x_dolly) | cc-by-sa-3.0 | |
|
| [Amod/mental_health_counseling_conversations](https://huggingface.co/datasets/Amod/mental_health_counseling_conversations) | openrail | |
|
| [sablo/oasst2_curated](https://huggingface.co/datasets/sablo/oasst2_curated) | apache-2.0 | |
|
| [cognitivecomputations/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/cognitivecomputations/wizard_vicuna_70k_unfiltered) | apache-2.0 | |
|
| [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) | apache-2.0 | |
|
|
|
```python |
|
SFTTrainer( |
|
model, |
|
train_dataset=train_dataset, |
|
dataset_text_field="text", |
|
eval_dataset=eval_dataset, |
|
max_seq_length=2048, |
|
packing=True, |
|
args=TrainingArguments( |
|
learning_rate=2e-6, |
|
per_device_train_batch_size=1, |
|
per_device_eval_batch_size=1, |
|
gradient_accumulation_steps=16, |
|
lr_scheduler_type="cosine", |
|
num_train_epochs=1, |
|
logging_strategy="steps", |
|
save_strategy="steps", |
|
evaluation_strategy="steps", |
|
logging_steps=10, |
|
eval_steps=10, |
|
save_steps=10, |
|
warmup_steps=50, |
|
load_best_model_at_end=True, |
|
metric_for_best_model="eval_loss", |
|
greater_is_better=False, |
|
weight_decay=0.01, |
|
save_total_limit=10, |
|
neftune_noise_alpha=5, |
|
), |
|
callbacks=[ |
|
EarlyStoppingCallback( |
|
early_stopping_patience=3, |
|
early_stopping_threshold=0.005 |
|
), |
|
], |
|
) |
|
``` |
|
|
|
```python |
|
DPOTrainer( |
|
model, |
|
beta=0.1, |
|
train_dataset=dataset, |
|
tokenizer=tokenizer, |
|
eval_dataset=eval_dataset, |
|
max_length=1536, |
|
max_prompt_length=1024, |
|
args=TrainingArguments( |
|
learning_rate=2e-6, |
|
per_device_train_batch_size=1, |
|
per_device_eval_batch_size=1, |
|
gradient_accumulation_steps=1, |
|
lr_scheduler_type="cosine", |
|
num_train_epochs=1, |
|
logging_strategy="steps", |
|
save_strategy="steps", |
|
evaluation_strategy="steps", |
|
logging_steps=1, |
|
eval_steps=1, |
|
save_steps=1, |
|
warmup_steps=0, |
|
load_best_model_at_end=True, |
|
metric_for_best_model="eval_loss", |
|
greater_is_better=False, |
|
weight_decay=0.0, |
|
neftune_noise_alpha=5, |
|
remove_unused_columns=False, |
|
), |
|
callbacks=[ |
|
EarlyStoppingCallback( |
|
early_stopping_patience=3, |
|
early_stopping_threshold=0.005 |
|
), |
|
], |
|
) |
|
``` |
|
|
|
## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Felladrin__Pythia-31M-Chat-v1) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |19.92| |
|
|AI2 Reasoning Challenge (25-Shot)|22.70| |
|
|HellaSwag (10-Shot) |25.60| |
|
|MMLU (5-Shot) |23.24| |
|
|TruthfulQA (0-shot) | 0.00| |
|
|Winogrande (5-shot) |47.99| |
|
|GSM8k (5-shot) | 0.00| |
|
|