Jokes Model
A fine-tuned DistilGPT2 model that generates short, clean, and (sometimes) funny jokes!
Model Details
- Model type: Causal Language Model (DistilGPT2)
- Fine-tuned on: 10,000 filtered jokes from shortjokes.csv
- Training epochs: 5
- Max joke length: 80 tokens
Usage
Direct Inference
from transformers import pipeline, AutoTokenizer
import torch
#Please add the BLOCKLIST for clean jokes
BLOCKLIST = [
"sex", "naked", "porn", "fuck", "dick", "penis", "ass",
"blowjob", "orgasm", "rape", "kill", "die", "shit",
"crap", "bastard", "hell", "damn", "bitch", "underage",
"pedo", "hit", "shot", "gun", "drug", "drunk", "fag", "cunt"
]
def is_safe(text):
text_lower = text.lower()
return not any(bad_word in text_lower for bad_word in BLOCKLIST)
def generate_joke(prompt="Tell me a clean joke:"):
joke_gen = pipeline(
"text-generation",
model="FaisalGh/jokes-model",
device=0 if torch.cuda.is_available() else -1
)
output = joke_gen(
prompt,
max_length=80,
temperature=0.7,
top_k=50,
top_p=0.9,
repetition_penalty=1.5,
no_repeat_ngram_size=2,
do_sample=True,
pad_token_id=50256,
eos_token_id=50256
)
generated_text = output[0]['generated_text']
first_sentence = generated_text.split(".")[0] + "."
return "[Content filtered] Please try again." if not is_safe(first_sentence) else first_sentence.strip()
print(generate_joke("Tell me a clean joke:"))
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support