Edit model card

wav2vec2-base-wakeword

This model is a fine-tuned version of facebook/wav2vec2-base on the superb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1988
  • Accuracy: 0.8980

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 0
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5835 0.9832 44 0.4825 0.8305
0.3198 1.9888 89 0.3220 0.8681
0.2074 2.9944 134 0.2879 0.8571
0.164 4.0 179 0.2867 0.8454
0.1524 4.9832 223 0.2757 0.8414
0.1529 5.9888 268 0.3233 0.8273
0.1256 6.9944 313 0.2192 0.8666
0.1169 8.0 358 0.1988 0.8980
0.1128 8.9832 402 0.2188 0.8713
0.1252 9.8324 440 0.2259 0.8689

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Ezhilraj69999/wav2vec2-base-wakeword

Finetuned
(639)
this model