|
|
|
import math |
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
@triton.heuristics( |
|
{ |
|
"EVEN_N": lambda args: args["seqlen"] % args["BLOCK_N"] == 0, |
|
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"], |
|
} |
|
) |
|
@triton.jit |
|
def _fwd_eva_prep_kv_kernel( |
|
K, |
|
V, |
|
PARAM_MU, |
|
PARAM_PHI, |
|
Mask, |
|
Out_RFA_K, |
|
Out_RFA_V, |
|
softmax_scale, |
|
stride_kb, stride_kh, stride_kn, |
|
stride_vb, stride_vh, stride_vn, |
|
stride_mu_h, |
|
stride_phi_h, |
|
stride_mb, stride_mn, |
|
stride_ok_b, stride_ok_h, stride_ok_c, |
|
stride_ov_b, stride_ov_h, stride_ov_c, |
|
nheads, |
|
seqlen, |
|
nchunks, |
|
headdim, |
|
CHUNKS_PER_BLOCK: tl.constexpr, |
|
CHUNK_SIZE: tl.constexpr, |
|
MASK_TYPE: tl.constexpr, |
|
BLOCK_HEADDIM: tl.constexpr, |
|
EVEN_N: tl.constexpr, |
|
EVEN_HEADDIM: tl.constexpr, |
|
BLOCK_N: tl.constexpr, |
|
): |
|
start_n = tl.program_id(0) |
|
offs_bh = tl.program_id(1) |
|
offs_h = offs_bh % nheads |
|
offs_b = offs_bh // nheads |
|
|
|
|
|
|
|
offs_c = tl.arange(0, CHUNKS_PER_BLOCK) |
|
offs_m = tl.arange(0, CHUNK_SIZE) |
|
offs_d = tl.arange(0, BLOCK_HEADDIM) |
|
|
|
k_ptrs = ( |
|
K + |
|
offs_b * stride_kb + |
|
offs_h * stride_kh + |
|
( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) * stride_kn + |
|
offs_d[None, None, :] |
|
) |
|
) |
|
v_ptrs = ( |
|
V + |
|
offs_b * stride_vb + |
|
offs_h * stride_vh + |
|
( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) * stride_vn + |
|
offs_d[None, None, :] |
|
) |
|
) |
|
param_mu_ptrs = ( |
|
PARAM_MU + |
|
offs_h * stride_mu_h + |
|
offs_d[None, None, :] |
|
) |
|
param_phi_ptrs = ( |
|
PARAM_PHI + |
|
offs_h * stride_phi_h + |
|
offs_d[None, None, :] |
|
) |
|
log2e = 1.4426950408889634 |
|
if MASK_TYPE == 1: |
|
m_ptrs = ( |
|
Mask + |
|
offs_b * stride_mb + |
|
( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None] * CHUNK_SIZE + |
|
offs_m[None, :] |
|
) * stride_mn |
|
) |
|
) |
|
if EVEN_N: |
|
if EVEN_HEADDIM: |
|
k = tl.load( |
|
k_ptrs |
|
) |
|
else: |
|
k = tl.load( |
|
k_ptrs, |
|
mask=offs_d[None, None, :] < headdim, |
|
other=0.0 |
|
) |
|
else: |
|
if EVEN_HEADDIM: |
|
k = tl.load( |
|
k_ptrs, |
|
mask=( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) < seqlen, |
|
other=0.0 |
|
) |
|
else: |
|
k = tl.load( |
|
k_ptrs, |
|
mask=( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) < seqlen |
|
) & (offs_d[None, None, :] < headdim), |
|
other=0.0 |
|
) |
|
|
|
param_mu = tl.load(param_mu_ptrs).to(k.dtype) |
|
rfa_k_c_w = tl.zeros([CHUNKS_PER_BLOCK, CHUNK_SIZE], dtype=tl.float32) |
|
rfa_k_c_w += tl.sum(k * param_mu, axis=-1) |
|
rfa_k_c_w *= log2e |
|
if MASK_TYPE == 1: |
|
if EVEN_N: |
|
mask = tl.load( |
|
m_ptrs |
|
) |
|
else: |
|
mask = tl.load( |
|
m_ptrs, |
|
mask=( |
|
start_n * BLOCK_N + |
|
offs_c[:, None] * CHUNK_SIZE + |
|
offs_m[None, :] |
|
) < seqlen, |
|
other=1, |
|
) |
|
rfa_k_c_w = tl.where(mask, float("-inf"), rfa_k_c_w) |
|
|
|
m_rfa_k_c_w = tl.max(rfa_k_c_w, axis=-1) |
|
masked_out_rows_rfa_k = (m_rfa_k_c_w == float("-inf")) |
|
m_rfa_k_c_w_masked = tl.where(masked_out_rows_rfa_k, 0, m_rfa_k_c_w) |
|
rfa_k_c_w = tl.exp2(rfa_k_c_w - m_rfa_k_c_w_masked[:, None]) |
|
denom_k = tl.sum(rfa_k_c_w, axis=-1) |
|
denom_k = tl.where(denom_k == 0.0, 1.0, denom_k) |
|
rfa_k_c_w = rfa_k_c_w / denom_k[:, None] |
|
rfa_k_c = tl.sum(k * rfa_k_c_w[:, :, None].to(k.dtype), axis=-2) |
|
|
|
offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK) |
|
out_rfa_k_ptrs = ( |
|
Out_RFA_K + |
|
offs_b * stride_ok_b + |
|
offs_h * stride_ok_h + |
|
(offs_out_c[:, None] * stride_ok_c + offs_d[None, :]) |
|
) |
|
|
|
if EVEN_N: |
|
if EVEN_HEADDIM: |
|
tl.store( |
|
out_rfa_k_ptrs, rfa_k_c |
|
) |
|
else: |
|
tl.store( |
|
out_rfa_k_ptrs, rfa_k_c, |
|
mask=offs_d[None, :] < headdim |
|
) |
|
else: |
|
if EVEN_HEADDIM: |
|
tl.store( |
|
out_rfa_k_ptrs, rfa_k_c, |
|
mask=offs_out_c[:, None] < nchunks |
|
) |
|
else: |
|
tl.store( |
|
out_rfa_k_ptrs, rfa_k_c, |
|
mask=(offs_out_c[:, None] < nchunks) & (offs_d[None, :] < headdim) |
|
) |
|
|
|
|
|
param_phi = tl.load(param_phi_ptrs).to(k.dtype) |
|
rfa_v_c_w = tl.zeros([CHUNKS_PER_BLOCK, CHUNK_SIZE], dtype=tl.float32) |
|
rfa_v_c_w += tl.sum(k * param_phi, axis=-1) |
|
rfa_v_c_w -= (0.5 * tl.sum(k * k, axis=-1)) |
|
rfa_v_c_w *= log2e * softmax_scale |
|
if not EVEN_N: |
|
rfa_v_c_w += tl.where( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None] * CHUNK_SIZE + |
|
offs_m[None, :] |
|
) < seqlen, |
|
0, |
|
float("-inf") |
|
) |
|
|
|
if MASK_TYPE == 1: |
|
rfa_v_c_w = tl.where(mask, float("-inf"), rfa_v_c_w) |
|
|
|
if EVEN_N: |
|
if EVEN_HEADDIM: |
|
v = tl.load( |
|
v_ptrs |
|
) |
|
else: |
|
v = tl.load( |
|
v_ptrs, |
|
mask=offs_d[None, None, :] < headdim, |
|
other=0.0 |
|
) |
|
else: |
|
if EVEN_HEADDIM: |
|
v = tl.load( |
|
v_ptrs, |
|
mask=( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) < seqlen, |
|
other=0.0 |
|
) |
|
else: |
|
v = tl.load( |
|
v_ptrs, |
|
mask=( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) < seqlen |
|
) & (offs_d[None, None, :] < headdim), |
|
other=0.0 |
|
) |
|
|
|
|
|
m_rfa_v_c_w = tl.max(rfa_v_c_w, axis=-1) |
|
masked_out_rows_rfa_v = (m_rfa_v_c_w == float("-inf")) |
|
m_rfa_v_c_w_masked = tl.where(masked_out_rows_rfa_v, 0, m_rfa_v_c_w) |
|
rfa_v_c_w = tl.exp2(rfa_v_c_w - m_rfa_v_c_w_masked[:, None]) |
|
denom_v = tl.sum(rfa_v_c_w, axis=-1) |
|
denom_v = tl.where(denom_v == 0.0, 1.0, denom_v) |
|
rfa_v_c_w = rfa_v_c_w / denom_v[:, None] |
|
rfa_v_c = tl.sum(v * rfa_v_c_w[:, :, None].to(v.dtype), axis=-2) |
|
|
|
offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK) |
|
out_rfa_v_ptrs = ( |
|
Out_RFA_V + |
|
offs_b * stride_ov_b + |
|
offs_h * stride_ov_h + |
|
(offs_out_c[:, None] * stride_ov_c + offs_d[None, :]) |
|
) |
|
if EVEN_N: |
|
if EVEN_HEADDIM: |
|
tl.store( |
|
out_rfa_v_ptrs, rfa_v_c |
|
) |
|
else: |
|
tl.store( |
|
out_rfa_v_ptrs, rfa_v_c, |
|
mask=offs_d[None, :] < headdim |
|
) |
|
else: |
|
if EVEN_HEADDIM: |
|
tl.store( |
|
out_rfa_v_ptrs, rfa_v_c, |
|
mask=offs_out_c[:, None] < nchunks |
|
) |
|
else: |
|
tl.store( |
|
out_rfa_v_ptrs, rfa_v_c, |
|
mask=(offs_out_c[:, None] < nchunks) & (offs_d[None, :] < headdim) |
|
) |
|
|
|
|
|
|
|
@triton.heuristics( |
|
{ |
|
"EVEN_N": lambda args: args["seqlen"] % args["BLOCK_N"] == 0, |
|
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"], |
|
} |
|
) |
|
@triton.jit |
|
def _bwd_eva_prep_kv_kernel( |
|
RFA_K, |
|
RFA_V, |
|
K, |
|
V, |
|
PARAM_MU, |
|
PARAM_PHI, |
|
Mask, |
|
D_RFA_K, |
|
D_RFA_V, |
|
D_K, |
|
D_V, |
|
D_PARAM_MU_PARTIAL, |
|
D_PARAM_PHI_PARTIAL, |
|
softmax_scale, |
|
stride_rfa_k_b, stride_rfa_k_h, stride_rfa_k_c, |
|
stride_rfa_v_b, stride_rfa_v_h, stride_rfa_v_c, |
|
stride_kb, stride_kh, stride_kn, |
|
stride_vb, stride_vh, stride_vn, |
|
stride_mu_h, |
|
stride_phi_h, |
|
stride_mb, stride_mn, |
|
stride_d_rfa_k_b, stride_d_rfa_k_h, stride_d_rfa_k_c, |
|
stride_d_rfa_v_b, stride_d_rfa_v_h, stride_d_rfa_v_c, |
|
stride_d_k_b, stride_d_k_h, stride_d_k_n, |
|
stride_d_v_b, stride_d_v_h, stride_d_v_n, |
|
stride_d_mu_b, stride_d_mu_h, stride_d_mu_g, |
|
stride_d_phi_b, stride_d_phi_h, stride_d_phi_g, |
|
nheads, |
|
seqlen, |
|
nchunks, |
|
headdim, |
|
CHUNKS_PER_BLOCK: tl.constexpr, |
|
CHUNK_SIZE: tl.constexpr, |
|
MASK_TYPE: tl.constexpr, |
|
BLOCK_HEADDIM: tl.constexpr, |
|
EVEN_N: tl.constexpr, |
|
EVEN_HEADDIM: tl.constexpr, |
|
BLOCK_N: tl.constexpr, |
|
): |
|
start_n = tl.program_id(0) |
|
offs_bh = tl.program_id(1) |
|
offs_h = offs_bh % nheads |
|
offs_b = offs_bh // nheads |
|
|
|
|
|
|
|
offs_c = tl.arange(0, CHUNKS_PER_BLOCK) |
|
offs_m = tl.arange(0, CHUNK_SIZE) |
|
offs_d = tl.arange(0, BLOCK_HEADDIM) |
|
|
|
offs_rfa_c = start_n * CHUNKS_PER_BLOCK + offs_c |
|
|
|
k_ptrs = ( |
|
K + |
|
offs_b * stride_kb + |
|
offs_h * stride_kh + |
|
( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) * stride_kn + |
|
offs_d[None, None, :] |
|
) |
|
) |
|
rfa_k_ptrs = ( |
|
RFA_K + |
|
offs_b * stride_rfa_k_b + |
|
offs_h * stride_rfa_k_h + |
|
(offs_rfa_c[:, None] * stride_rfa_k_c + offs_d[None, :]) |
|
) |
|
rfa_v_ptrs = ( |
|
RFA_V + |
|
offs_b * stride_rfa_v_b + |
|
offs_h * stride_rfa_v_h + |
|
(offs_rfa_c[:, None] * stride_rfa_v_c + offs_d[None, :]) |
|
) |
|
|
|
d_rfa_k_ptrs = ( |
|
D_RFA_K + |
|
offs_b * stride_d_rfa_k_b + |
|
offs_h * stride_d_rfa_k_h + |
|
(offs_rfa_c[:, None] * stride_d_rfa_k_c + offs_d[None, :]) |
|
) |
|
d_rfa_v_ptrs = ( |
|
D_RFA_V + |
|
offs_b * stride_d_rfa_v_b + |
|
offs_h * stride_d_rfa_v_h + |
|
(offs_rfa_c[:, None] * stride_d_rfa_v_c + offs_d[None, :]) |
|
) |
|
|
|
param_mu_ptrs = ( |
|
PARAM_MU + |
|
offs_h * stride_mu_h + |
|
offs_d[None, None, :] |
|
) |
|
param_phi_ptrs = ( |
|
PARAM_PHI + |
|
offs_h * stride_phi_h + |
|
offs_d[None, None, :] |
|
) |
|
|
|
log2e = 1.4426950408889634 |
|
if MASK_TYPE == 1: |
|
m_ptrs = ( |
|
Mask + |
|
offs_b * stride_mb + |
|
( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None] * CHUNK_SIZE + |
|
offs_m[None, :] |
|
) * stride_mn |
|
) |
|
) |
|
if EVEN_N: |
|
if EVEN_HEADDIM: |
|
k = tl.load( |
|
k_ptrs |
|
) |
|
else: |
|
k = tl.load( |
|
k_ptrs, |
|
mask=offs_d[None, None, :] < headdim, |
|
other=0.0 |
|
) |
|
else: |
|
if EVEN_HEADDIM: |
|
k = tl.load( |
|
k_ptrs, |
|
mask=( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) < seqlen, |
|
other=0.0 |
|
) |
|
else: |
|
k = tl.load( |
|
k_ptrs, |
|
mask=( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) < seqlen |
|
) & (offs_d[None, None, :] < headdim), |
|
other=0.0 |
|
) |
|
|
|
if EVEN_N: |
|
if EVEN_HEADDIM: |
|
rfa_k = tl.load( |
|
rfa_k_ptrs |
|
) |
|
else: |
|
rfa_k = tl.load( |
|
rfa_k_ptrs, |
|
mask=offs_d[None, :] < headdim, |
|
other=0.0 |
|
) |
|
else: |
|
if EVEN_HEADDIM: |
|
rfa_k = tl.load( |
|
rfa_k_ptrs, |
|
mask=offs_rfa_c[:, None] < nchunks, |
|
other=0.0 |
|
) |
|
else: |
|
rfa_k = tl.load( |
|
rfa_k_ptrs, |
|
mask=(offs_rfa_c[:, None] < nchunks) & (offs_d[None, :] < headdim), |
|
other=0.0 |
|
) |
|
|
|
if EVEN_N: |
|
if EVEN_HEADDIM: |
|
d_rfa_k = tl.load( |
|
d_rfa_k_ptrs |
|
) |
|
else: |
|
d_rfa_k = tl.load( |
|
d_rfa_k_ptrs, |
|
mask=offs_d[None, :] < headdim, |
|
other=0.0 |
|
) |
|
else: |
|
if EVEN_HEADDIM: |
|
d_rfa_k = tl.load( |
|
d_rfa_k_ptrs, |
|
mask=offs_rfa_c[:, None] < nchunks, |
|
other=0.0 |
|
) |
|
else: |
|
d_rfa_k = tl.load( |
|
d_rfa_k_ptrs, |
|
mask=(offs_rfa_c[:, None] < nchunks) & (offs_d[None, :] < headdim), |
|
other=0.0 |
|
) |
|
|
|
param_mu = tl.load(param_mu_ptrs).to(k.dtype) |
|
mu_c_w = tl.zeros([CHUNKS_PER_BLOCK, CHUNK_SIZE], dtype=tl.float32) |
|
mu_c_w += tl.sum(k * param_mu, axis=-1) |
|
mu_c_w *= log2e |
|
|
|
if not EVEN_N: |
|
mu_c_w += tl.where( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None] * CHUNK_SIZE + |
|
offs_m[None, :] |
|
) < seqlen, |
|
0, |
|
float("-inf") |
|
) |
|
|
|
if MASK_TYPE == 1: |
|
if EVEN_N: |
|
mask = tl.load( |
|
m_ptrs |
|
) |
|
else: |
|
mask = tl.load( |
|
m_ptrs, |
|
mask=( |
|
start_n * BLOCK_N + |
|
offs_c[:, None] * CHUNK_SIZE + |
|
offs_m[None, :] |
|
) < seqlen, |
|
other=1, |
|
) |
|
mu_c_w = tl.where(mask, float("-inf"), mu_c_w) |
|
|
|
|
|
m_mu_c_w = tl.max(mu_c_w, axis=-1) |
|
masked_out_rows_mu = (m_mu_c_w == float("-inf")) |
|
m_mu_c_w_masked = tl.where(masked_out_rows_mu, 0, m_mu_c_w) |
|
mu_c_w = tl.exp2(mu_c_w - m_mu_c_w_masked[:, None]) |
|
denom_mu = tl.sum(mu_c_w, axis=-1) |
|
denom_mu = tl.where(denom_mu == 0.0, 1.0, denom_mu) |
|
mu_tilde_c_w = mu_c_w / denom_mu[:, None] |
|
mu_tilde_c_w = mu_tilde_c_w.to(k.dtype) |
|
|
|
d_mu_tilde_c_w = tl.sum(d_rfa_k[:, None, :] * k, axis=-1) |
|
|
|
d_out_rfa_k_t_rfa_k = tl.sum(d_rfa_k * rfa_k, axis=-1)[:, None] |
|
d_mu_c_w = (d_mu_tilde_c_w - d_out_rfa_k_t_rfa_k) * mu_tilde_c_w |
|
|
|
|
|
d_param_mu = tl.sum(tl.sum(d_mu_c_w[:, :, None] * k, axis=0), axis=0) |
|
|
|
d_k = mu_tilde_c_w[:, :, None] * d_rfa_k[:, None, :] + d_mu_c_w[:, :, None] * param_mu |
|
|
|
d_param_mu_partial_ptrs = ( |
|
D_PARAM_MU_PARTIAL + |
|
offs_b * stride_d_mu_b + |
|
offs_h * stride_d_mu_h + |
|
start_n * stride_d_mu_g + |
|
offs_d |
|
) |
|
if EVEN_HEADDIM: |
|
tl.store( |
|
d_param_mu_partial_ptrs, d_param_mu |
|
) |
|
else: |
|
tl.store( |
|
d_param_mu_partial_ptrs, d_param_mu, |
|
mask=offs_d < headdim |
|
) |
|
|
|
|
|
v_ptrs = ( |
|
V + |
|
offs_b * stride_vb + |
|
offs_h * stride_vh + |
|
( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) * stride_vn + |
|
offs_d[None, None, :] |
|
) |
|
) |
|
if EVEN_N: |
|
if EVEN_HEADDIM: |
|
v = tl.load( |
|
v_ptrs |
|
) |
|
else: |
|
v = tl.load( |
|
v_ptrs, |
|
mask=offs_d[None, None, :] < headdim, |
|
other=0.0 |
|
) |
|
else: |
|
if EVEN_HEADDIM: |
|
v = tl.load( |
|
v_ptrs, |
|
mask=( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) < seqlen, |
|
other=0.0 |
|
) |
|
else: |
|
v = tl.load( |
|
v_ptrs, |
|
mask=( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) < seqlen |
|
) & (offs_d[None, None, :] < headdim), |
|
other=0.0 |
|
) |
|
|
|
|
|
if EVEN_N: |
|
if EVEN_HEADDIM: |
|
rfa_v = tl.load( |
|
rfa_v_ptrs |
|
) |
|
else: |
|
rfa_v = tl.load( |
|
rfa_v_ptrs, |
|
mask=offs_d[None, :] < headdim, |
|
other=0.0 |
|
) |
|
else: |
|
if EVEN_HEADDIM: |
|
rfa_v = tl.load( |
|
rfa_v_ptrs, |
|
mask=offs_rfa_c[:, None] < nchunks, |
|
other=0.0 |
|
) |
|
else: |
|
rfa_v = tl.load( |
|
rfa_v_ptrs, |
|
mask=(offs_rfa_c[:, None] < nchunks) & (offs_d[None, :] < headdim), |
|
other=0.0 |
|
) |
|
|
|
if EVEN_N: |
|
if EVEN_HEADDIM: |
|
d_rfa_v = tl.load( |
|
d_rfa_v_ptrs |
|
) |
|
else: |
|
d_rfa_v = tl.load( |
|
d_rfa_v_ptrs, |
|
mask=offs_d[None, :] < headdim, |
|
other=0.0 |
|
) |
|
else: |
|
if EVEN_HEADDIM: |
|
d_rfa_v = tl.load( |
|
d_rfa_v_ptrs, |
|
mask=offs_rfa_c[:, None] < nchunks, |
|
other=0.0 |
|
) |
|
else: |
|
d_rfa_v = tl.load( |
|
d_rfa_v_ptrs, |
|
mask=(offs_rfa_c[:, None] < nchunks) & (offs_d[None, :] < headdim), |
|
other=0.0 |
|
) |
|
|
|
param_phi = tl.load(param_phi_ptrs).to(k.dtype) |
|
phi_c_w = tl.zeros([CHUNKS_PER_BLOCK, CHUNK_SIZE], dtype=tl.float32) |
|
phi_c_w += tl.sum(k * param_phi, axis=-1) |
|
phi_c_w -= (0.5 * tl.sum(k * k, axis=-1)) |
|
phi_c_w *= log2e * softmax_scale |
|
if not EVEN_N: |
|
phi_c_w += tl.where( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None] * CHUNK_SIZE + |
|
offs_m[None, :] |
|
) < seqlen, |
|
0, |
|
float("-inf") |
|
) |
|
|
|
if MASK_TYPE == 1: |
|
phi_c_w = tl.where(mask, float("-inf"), phi_c_w) |
|
|
|
|
|
m_phi_c_w = tl.max(phi_c_w, axis=-1) |
|
masked_out_rows_phi = (m_phi_c_w == float("-inf")) |
|
m_phi_c_w_masked = tl.where(masked_out_rows_phi, 0, m_phi_c_w) |
|
phi_c_w = tl.exp2(phi_c_w - m_phi_c_w_masked[:, None]) |
|
denom_phi = tl.sum(phi_c_w, axis=-1) |
|
denom_phi = tl.where(denom_phi == 0.0, 1.0, denom_phi) |
|
phi_tilde_c_w = phi_c_w / denom_phi[:, None] |
|
|
|
|
|
phi_tilde_c_w = phi_tilde_c_w.to(k.dtype) |
|
d_phi_tilde_c_w = tl.sum(d_rfa_v[:, None, :] * v, axis=-1) |
|
d_out_rfa_v_t_rfa_v = tl.sum(d_rfa_v * rfa_v, axis=-1)[:, None] |
|
d_phi_c_w = (d_phi_tilde_c_w.to(tl.float32) - d_out_rfa_v_t_rfa_v.to(tl.float32)) * phi_tilde_c_w |
|
|
|
d_param_phi = tl.sum(tl.sum(d_phi_c_w[:, :, None] * k * softmax_scale, axis=0), axis=0) |
|
d_v = phi_tilde_c_w[:, :, None] * d_rfa_v[:, None, :] |
|
|
|
d_k = d_k + softmax_scale * d_phi_c_w[:, :, None] * (param_phi - k) |
|
|
|
d_k_ptrs = ( |
|
D_K + |
|
offs_b * stride_d_k_b + |
|
offs_h * stride_d_k_h + |
|
( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) * stride_d_k_n + |
|
offs_d[None, None, :] |
|
) |
|
) |
|
d_v_ptrs = ( |
|
D_V + |
|
offs_b * stride_d_v_b + |
|
offs_h * stride_d_v_h + |
|
( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) * stride_d_v_n + |
|
offs_d[None, None, :] |
|
) |
|
) |
|
if EVEN_N: |
|
if EVEN_HEADDIM: |
|
tl.store( |
|
d_k_ptrs, d_k |
|
) |
|
tl.store( |
|
d_v_ptrs, d_v |
|
) |
|
else: |
|
tl.store( |
|
d_k_ptrs, d_k, |
|
mask=offs_d[None, None, :] < headdim |
|
) |
|
tl.store( |
|
d_v_ptrs, d_v, |
|
mask=offs_d[None, None, :] < headdim |
|
) |
|
else: |
|
if EVEN_HEADDIM: |
|
tl.store( |
|
d_k_ptrs, d_k, |
|
mask=( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) < seqlen |
|
), |
|
) |
|
tl.store( |
|
d_v_ptrs, d_v, |
|
mask=( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) < seqlen |
|
), |
|
) |
|
else: |
|
tl.store( |
|
d_k_ptrs, d_k, |
|
mask=( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) < seqlen |
|
) & (offs_d[None, None, :] < headdim), |
|
) |
|
tl.store( |
|
d_v_ptrs, d_v, |
|
mask=( |
|
( |
|
start_n * BLOCK_N + |
|
offs_c[:, None, None] * CHUNK_SIZE + |
|
offs_m[None, :, None] |
|
) < seqlen |
|
) & (offs_d[None, None, :] < headdim), |
|
) |
|
d_param_phi_partial_ptrs = ( |
|
D_PARAM_PHI_PARTIAL + |
|
offs_b * stride_d_phi_b + |
|
offs_h * stride_d_phi_h + |
|
start_n * stride_d_phi_g + |
|
offs_d |
|
) |
|
if EVEN_HEADDIM: |
|
tl.store( |
|
d_param_phi_partial_ptrs, d_param_phi |
|
) |
|
else: |
|
tl.store( |
|
d_param_phi_partial_ptrs, d_param_phi, |
|
mask=offs_d < headdim |
|
) |
|
|
|
def triton_eva_prep_kv_fwd(k, v, param_mu, param_phi, mask, softmax_scale, chunksize): |
|
k, v, param_mu, param_phi = [ |
|
x if x.stride(-1) == 1 else x.contiguous() |
|
for x in [k, v, param_mu, param_phi] |
|
] |
|
|
|
|
|
batch, nheads, seqlen, head_dim = k.shape |
|
assert seqlen % chunksize == 0, "seqlen must be divisible by chunksize" |
|
nchunks = seqlen // chunksize |
|
assert k.shape == (batch, nheads, seqlen, head_dim) |
|
assert v.shape == (batch, nheads, seqlen, head_dim) |
|
assert param_mu.shape == (1, nheads, 1, 1, head_dim) |
|
assert param_phi.shape == (1, nheads, 1, 1, head_dim) |
|
assert head_dim <= 128, "We only test head dimensions up to 128" |
|
assert k.dtype == v.dtype == param_mu.dtype == param_phi.dtype, "All tensors must have the same type" |
|
assert k.dtype in [torch.bfloat16, torch.float], "Only support bf16 and fp32 for now" |
|
assert k.is_cuda and v.is_cuda |
|
softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim) |
|
|
|
mask_type = 0 |
|
if mask is not None: |
|
mask_type = 1 |
|
assert mask.dtype == torch.bool |
|
assert mask.is_cuda |
|
assert mask.dim() == 4 |
|
assert mask.shape == (batch, 1, seqlen, 1) |
|
if mask.stride(-1) != 1: |
|
mask = mask.contiguous() |
|
mask_strides = ( |
|
(mask.stride(0), mask.stride(2)) |
|
if mask_type == 1 else |
|
(0, 0) |
|
) |
|
out_rfa_k = torch.empty((batch, nheads, nchunks, head_dim), dtype=k.dtype, device=k.device) |
|
out_rfa_v = torch.empty((batch, nheads, nchunks, head_dim), dtype=v.dtype, device=v.device) |
|
|
|
BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16) |
|
BLOCK = 128 |
|
num_warps = 4 if head_dim <= 64 else 8 |
|
|
|
assert (BLOCK > chunksize) & (BLOCK % chunksize) == 0, "BLOCK must be divisible by chunksize" |
|
chunks_per_block = BLOCK // chunksize |
|
|
|
grid = lambda META: (triton.cdiv(seqlen, META["BLOCK_N"]), batch * nheads) |
|
_fwd_eva_prep_kv_kernel[grid]( |
|
k, |
|
v, |
|
param_mu, |
|
param_phi, |
|
mask, |
|
out_rfa_k, |
|
out_rfa_v, |
|
softmax_scale, |
|
k.stride(0), k.stride(1), k.stride(2), |
|
v.stride(0), v.stride(1), v.stride(2), |
|
param_mu.stride(1), |
|
param_phi.stride(1), |
|
mask_strides[0], mask_strides[1], |
|
out_rfa_k.stride(0), out_rfa_k.stride(1), out_rfa_k.stride(2), |
|
out_rfa_v.stride(0), out_rfa_v.stride(1), out_rfa_v.stride(2), |
|
nheads, |
|
seqlen, |
|
nchunks, |
|
head_dim, |
|
chunks_per_block, |
|
chunksize, |
|
mask_type, |
|
BLOCK_HEADDIM, |
|
BLOCK_N=BLOCK, |
|
num_warps=num_warps, |
|
num_stages=1, |
|
) |
|
return out_rfa_k, out_rfa_v |
|
|
|
def triton_eva_prep_kv_bwd( |
|
d_rfa_k, d_rfa_v, |
|
k, v, param_mu, param_phi, |
|
mask, |
|
rfa_k, rfa_v, |
|
d_k, d_v, d_param_mu, d_param_phi, |
|
softmax_scale, |
|
mask_type, |
|
chunksize |
|
): |
|
d_rfa_k, d_rfa_v = [ |
|
x if x.stride(-1) == 1 else x.contiguous() |
|
for x in [d_rfa_k, d_rfa_v] |
|
] |
|
|
|
|
|
batch, nheads, seqlen, head_dim = k.shape |
|
assert seqlen % chunksize == 0, "seqlen must be divisible by chunksize" |
|
nchunks = seqlen // chunksize |
|
softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim) |
|
|
|
mask_strides = ( |
|
(mask.stride(0), mask.stride(2)) |
|
if mask_type == 1 else |
|
(0, 0) |
|
) |
|
|
|
BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16) |
|
BLOCK = 128 |
|
num_warps = 4 if head_dim <= 64 else 8 |
|
|
|
assert (BLOCK > chunksize) & (BLOCK % chunksize) == 0, "BLOCK must be divisible by chunksize" |
|
chunks_per_block = BLOCK // chunksize |
|
|
|
partial_groups = triton.cdiv(seqlen, BLOCK) |
|
d_param_mu_partial = torch.zeros((batch, nheads, partial_groups, head_dim), dtype=torch.float32, device=d_rfa_k.device) |
|
d_param_phi_partial = torch.zeros((batch, nheads, partial_groups, head_dim), dtype=torch.float32, device=d_rfa_k.device) |
|
grid = lambda META: (partial_groups, batch * nheads) |
|
_bwd_eva_prep_kv_kernel[grid]( |
|
rfa_k, |
|
rfa_v, |
|
k, |
|
v, |
|
param_mu, |
|
param_phi, |
|
mask, |
|
d_rfa_k, |
|
d_rfa_v, |
|
d_k, |
|
d_v, |
|
d_param_mu_partial, |
|
d_param_phi_partial, |
|
softmax_scale, |
|
rfa_k.stride(0), rfa_k.stride(1), rfa_k.stride(2), |
|
rfa_v.stride(0), rfa_v.stride(1), rfa_v.stride(2), |
|
k.stride(0), k.stride(1), k.stride(2), |
|
v.stride(0), v.stride(1), v.stride(2), |
|
param_mu.stride(1), |
|
param_phi.stride(1), |
|
mask_strides[0], mask_strides[1], |
|
d_rfa_k.stride(0), d_rfa_k.stride(1), d_rfa_k.stride(2), |
|
d_rfa_v.stride(0), d_rfa_v.stride(1), d_rfa_v.stride(2), |
|
d_k.stride(0), d_k.stride(1), d_k.stride(2), |
|
d_v.stride(0), d_v.stride(1), d_v.stride(2), |
|
d_param_mu_partial.stride(0), d_param_mu_partial.stride(1), d_param_mu_partial.stride(2), |
|
d_param_phi_partial.stride(0), d_param_phi_partial.stride(1), d_param_phi_partial.stride(2), |
|
nheads, |
|
seqlen, |
|
nchunks, |
|
head_dim, |
|
chunks_per_block, |
|
chunksize, |
|
mask_type, |
|
BLOCK_HEADDIM, |
|
BLOCK_N=BLOCK, |
|
num_warps=num_warps, |
|
num_stages=1, |
|
) |
|
d_param_mu.copy_(d_param_mu_partial.sum(dim=(0, -2), keepdim=True).unsqueeze(-2).to(d_param_mu.dtype)) |
|
d_param_phi.copy_(d_param_phi_partial.sum(dim=(0, -2), keepdim=True).unsqueeze(-2).to(d_param_phi.dtype)) |
|
|
|
|
|
|
|
class EvaPrepKVFunc(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, k, v, param_mu, param_phi, mask, softmax_scale=None, chunksize=None): |
|
if mask is not None: |
|
mask_type = 1 |
|
else: |
|
mask_type = 0 |
|
rfa_k, rfa_v = triton_eva_prep_kv_fwd( |
|
k, v, param_mu, param_phi, mask, softmax_scale, chunksize |
|
) |
|
ctx.save_for_backward(k, v, param_mu, param_phi, mask, rfa_k, rfa_v) |
|
ctx.softmax_scale = softmax_scale |
|
ctx.chunksize = chunksize |
|
ctx.mask_type = mask_type |
|
return rfa_k, rfa_v |
|
|
|
@staticmethod |
|
def backward(ctx, d_rfa_k, d_rfa_v): |
|
k, v, param_mu, param_phi, mask, rfa_k, rfa_v = ctx.saved_tensors |
|
d_k = torch.empty_like(k) |
|
d_v = torch.empty_like(v) |
|
d_param_mu = torch.empty_like(param_mu) |
|
d_param_phi = torch.empty_like(param_phi) |
|
triton_eva_prep_kv_bwd( |
|
d_rfa_k, d_rfa_v, |
|
k, v, param_mu, param_phi, |
|
mask, |
|
rfa_k, rfa_v, |
|
d_k, d_v, d_param_mu, d_param_phi, |
|
ctx.softmax_scale, |
|
ctx.mask_type, |
|
ctx.chunksize |
|
) |
|
return d_k, d_v, d_param_mu, d_param_phi, None, None, None |
|
|
|
def eva_prep_kv_func_triton( |
|
k, v, |
|
param_mu, param_phi, |
|
mask, |
|
softmax_scale=None, chunksize=None |
|
): |
|
return EvaPrepKVFunc.apply( |
|
k, v, |
|
param_mu, param_phi, |
|
mask, |
|
softmax_scale, chunksize |
|
) |
|
|