Update model and kernels for training support
Browse files- eva.py +22 -17
- eva_agg_kernel.py +1349 -52
- eva_prep_kv_kernel.py +686 -26
- eva_pt_ref.py +1 -3
- modeling_evabyte.py +16 -196
eva.py
CHANGED
@@ -2,8 +2,8 @@ from typing import Dict, Optional, Tuple, List, Any, Union
|
|
2 |
import torch
|
3 |
from torch import nn
|
4 |
import torch.nn.functional as F
|
5 |
-
from .eva_agg_kernel import
|
6 |
-
from .eva_prep_kv_kernel import
|
7 |
try:
|
8 |
import triton
|
9 |
USE_TRITON_IMPL = True
|
@@ -129,10 +129,10 @@ class EvaAttention(nn.Module):
|
|
129 |
assert not output_attentions
|
130 |
bsz, q_len, _ = hidden_states.size()
|
131 |
|
132 |
-
if use_cache
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
|
137 |
# infer the model's running mode
|
138 |
is_prefilling = use_cache and past_key_value.get_seq_length(self.layer_idx) == 0
|
@@ -141,13 +141,16 @@ class EvaAttention(nn.Module):
|
|
141 |
if is_prefilling:
|
142 |
assert len(attention_mask) == 2
|
143 |
window_mask, intra_chunk_mask = attention_mask
|
144 |
-
|
145 |
elif is_decoding:
|
146 |
assert len(attention_mask) == 3
|
147 |
-
window_mask, intra_chunk_mask,
|
148 |
else:
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
151 |
|
152 |
############################################
|
153 |
# compute q, k, v from hidden states
|
@@ -201,7 +204,7 @@ class EvaAttention(nn.Module):
|
|
201 |
# k/v: [b, h, w, d]
|
202 |
# rfa_k/rfa_v: [b, h, w//c, d]
|
203 |
# 3. in forward inference; the seq_len is already divisible
|
204 |
-
rfa_k, rfa_v =
|
205 |
dump_k, dump_v,
|
206 |
self.adaptive_mu_k, self.adaptive_phi,
|
207 |
dump_rf_mask, self.head_dim_scaling, self.chunk_size
|
@@ -227,10 +230,11 @@ class EvaAttention(nn.Module):
|
|
227 |
# q: [b, h, n, d]
|
228 |
# k/v: [b, h, n, d]
|
229 |
# rfa_k/rfa_v: [b, h, n // c, d]
|
230 |
-
attn_output =
|
231 |
q, s_k, s_v,
|
232 |
rfa_k, rfa_v,
|
233 |
-
singleton_mask,
|
|
|
234 |
)
|
235 |
elif is_decoding:
|
236 |
# 2. in decoding, the input shape is
|
@@ -258,8 +262,8 @@ class EvaAttention(nn.Module):
|
|
258 |
agg_k = torch.cat([s_k, rfa_k[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
|
259 |
agg_v = torch.cat([s_v, rfa_v[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
|
260 |
if singleton_mask is not None:
|
261 |
-
assert
|
262 |
-
attn_mask = torch.cat([singleton_mask,
|
263 |
else:
|
264 |
attn_mask = singleton_mask
|
265 |
else:
|
@@ -275,10 +279,11 @@ class EvaAttention(nn.Module):
|
|
275 |
)
|
276 |
else:
|
277 |
# 3. in single-forward inference
|
278 |
-
attn_output =
|
279 |
q, s_k, s_v,
|
280 |
rfa_k, rfa_v,
|
281 |
-
singleton_mask,
|
|
|
282 |
)
|
283 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
284 |
raise ValueError(
|
|
|
2 |
import torch
|
3 |
from torch import nn
|
4 |
import torch.nn.functional as F
|
5 |
+
from .eva_agg_kernel import eva_agg_func_triton
|
6 |
+
from .eva_prep_kv_kernel import eva_prep_kv_func_triton
|
7 |
try:
|
8 |
import triton
|
9 |
USE_TRITON_IMPL = True
|
|
|
129 |
assert not output_attentions
|
130 |
bsz, q_len, _ = hidden_states.size()
|
131 |
|
132 |
+
if use_cache:
|
133 |
+
if past_key_value is None:
|
134 |
+
raise ValueError
|
135 |
+
assert isinstance(attention_mask, tuple)
|
136 |
|
137 |
# infer the model's running mode
|
138 |
is_prefilling = use_cache and past_key_value.get_seq_length(self.layer_idx) == 0
|
|
|
141 |
if is_prefilling:
|
142 |
assert len(attention_mask) == 2
|
143 |
window_mask, intra_chunk_mask = attention_mask
|
144 |
+
chunk_mask = None
|
145 |
elif is_decoding:
|
146 |
assert len(attention_mask) == 3
|
147 |
+
window_mask, intra_chunk_mask, chunk_mask = attention_mask
|
148 |
else:
|
149 |
+
if attention_mask is not None:
|
150 |
+
assert isinstance(attention_mask, tuple) and len(attention_mask) == 3
|
151 |
+
window_mask, chunk_mask, intra_chunk_mask = attention_mask
|
152 |
+
else:
|
153 |
+
window_mask, chunk_mask, intra_chunk_mask = None, None, None
|
154 |
|
155 |
############################################
|
156 |
# compute q, k, v from hidden states
|
|
|
204 |
# k/v: [b, h, w, d]
|
205 |
# rfa_k/rfa_v: [b, h, w//c, d]
|
206 |
# 3. in forward inference; the seq_len is already divisible
|
207 |
+
rfa_k, rfa_v = eva_prep_kv_func_triton(
|
208 |
dump_k, dump_v,
|
209 |
self.adaptive_mu_k, self.adaptive_phi,
|
210 |
dump_rf_mask, self.head_dim_scaling, self.chunk_size
|
|
|
230 |
# q: [b, h, n, d]
|
231 |
# k/v: [b, h, n, d]
|
232 |
# rfa_k/rfa_v: [b, h, n // c, d]
|
233 |
+
attn_output = eva_agg_func_triton(
|
234 |
q, s_k, s_v,
|
235 |
rfa_k, rfa_v,
|
236 |
+
singleton_mask, chunk_mask,
|
237 |
+
self.head_dim_scaling, self.window_size, self.chunks_per_window
|
238 |
)
|
239 |
elif is_decoding:
|
240 |
# 2. in decoding, the input shape is
|
|
|
262 |
agg_k = torch.cat([s_k, rfa_k[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
|
263 |
agg_v = torch.cat([s_v, rfa_v[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
|
264 |
if singleton_mask is not None:
|
265 |
+
assert chunk_mask is not None
|
266 |
+
attn_mask = torch.cat([singleton_mask, chunk_mask], dim=-1)
|
267 |
else:
|
268 |
attn_mask = singleton_mask
|
269 |
else:
|
|
|
279 |
)
|
280 |
else:
|
281 |
# 3. in single-forward inference
|
282 |
+
attn_output = eva_agg_func_triton(
|
283 |
q, s_k, s_v,
|
284 |
rfa_k, rfa_v,
|
285 |
+
singleton_mask, chunk_mask,
|
286 |
+
self.head_dim_scaling, self.window_size, self.chunks_per_window
|
287 |
)
|
288 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
289 |
raise ValueError(
|
eva_agg_kernel.py
CHANGED
@@ -4,15 +4,969 @@ import torch
|
|
4 |
import triton
|
5 |
import triton.language as tl
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
@triton.heuristics(
|
17 |
{
|
18 |
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
@@ -30,23 +984,24 @@ def _fwd_eva_agg_kernel(
|
|
30 |
RFA_K,
|
31 |
RFA_V,
|
32 |
WindowMask,
|
|
|
33 |
Out,
|
|
|
34 |
softmax_scale,
|
35 |
stride_qb, stride_qh, stride_qm,
|
36 |
stride_kb, stride_kh, stride_kn,
|
37 |
stride_vb, stride_vh, stride_vn,
|
38 |
stride_rfa_kb, stride_rfa_kh, stride_rfa_kc,
|
39 |
stride_rfa_vb, stride_rfa_vh, stride_rfa_vc,
|
40 |
-
|
|
|
41 |
stride_ob, stride_oh, stride_om,
|
|
|
42 |
nheads,
|
43 |
seqlen_q,
|
44 |
seqlen_k,
|
45 |
nchunks,
|
46 |
headdim,
|
47 |
-
CACHE_KEY_SEQLEN_Q, # TODO: why keeping this
|
48 |
-
CACHE_KEY_SEQLEN_K, # TODO: why keeping this
|
49 |
-
CACHE_KEY_NCHUNKS, # TODO: why keeping this
|
50 |
CHUNKS_PER_WINDOW: tl.constexpr,
|
51 |
WINDOW_SIZE: tl.constexpr,
|
52 |
MASK_TYPE: tl.constexpr,
|
@@ -106,11 +1061,18 @@ def _fwd_eva_agg_kernel(
|
|
106 |
qk_scale = softmax_scale
|
107 |
qk_scale *= 1.4426950408889634 # log2(e)
|
108 |
if MASK_TYPE == 1:
|
109 |
-
|
110 |
WindowMask +
|
111 |
-
off_b *
|
112 |
-
(offs_m[:, None] *
|
113 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
115 |
d_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
116 |
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
@@ -181,32 +1143,37 @@ def _fwd_eva_agg_kernel(
|
|
181 |
|
182 |
if MASK_TYPE == 1:
|
183 |
if EVEN_M & EVEN_W:
|
184 |
-
|
185 |
-
|
186 |
-
)
|
187 |
else:
|
188 |
-
|
189 |
-
|
190 |
mask=(offs_m[:, None] < seqlen_q)
|
191 |
& ((start_n - start_idx_n + offs_n)[None, :] < WINDOW_SIZE),
|
192 |
-
other=
|
193 |
-
)
|
194 |
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
195 |
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
196 |
# to multiply with softmax_scale here.
|
197 |
# we assume mask already implies the causal masking
|
198 |
-
qk = qk * qk_scale
|
|
|
199 |
m_ij = tl.maximum(tl.max(qk, 1), m_i)
|
200 |
-
|
|
|
|
|
201 |
else:
|
202 |
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
|
203 |
m_ij = tl.maximum(tl.max(qk, 1) * qk_scale, m_i)
|
204 |
-
|
|
|
|
|
205 |
|
206 |
d_ij = tl.sum(p, 1)
|
207 |
|
208 |
# scale acc_o
|
209 |
-
prev_scale = tl.exp2(m_i -
|
210 |
# # -- update output accumulator --
|
211 |
acc_o = acc_o * prev_scale[:, None]
|
212 |
# update acc_o
|
@@ -278,13 +1245,37 @@ def _fwd_eva_agg_kernel(
|
|
278 |
if not EVEN_C: # Need to mask out otherwise the softmax is wrong
|
279 |
qk += tl.where((start_c + offs_c)[None, :] < nchunks, 0, float("-inf"))
|
280 |
|
281 |
-
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
|
284 |
d_ij = tl.sum(p, 1)
|
285 |
|
286 |
# scale acc_o
|
287 |
-
prev_scale = tl.exp2(m_i -
|
288 |
# # -- update output accumulator --
|
289 |
acc_o = acc_o * prev_scale[:, None]
|
290 |
# update acc_o
|
@@ -320,7 +1311,10 @@ def _fwd_eva_agg_kernel(
|
|
320 |
d_i = d_i * prev_scale + d_ij
|
321 |
m_i = m_ij
|
322 |
|
323 |
-
#
|
|
|
|
|
|
|
324 |
acc_o = acc_o / d_i[:, None]
|
325 |
# TODO: understand why rematerialize offsets to save registers?
|
326 |
start_m = tl.program_id(0)
|
@@ -353,8 +1347,30 @@ def _fwd_eva_agg_kernel(
|
|
353 |
out_ptrs, acc_o,
|
354 |
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)
|
355 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
|
357 |
-
def triton_eva_agg_fwd(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
if rfa_k is None and rfa_v is None:
|
359 |
empty_rfa_kv = 1
|
360 |
|
@@ -394,13 +1410,27 @@ def triton_eva_agg_fwd(q, k, v, rfa_k, rfa_v, window_mask, softmax_scale, window
|
|
394 |
mask_type = 0
|
395 |
if window_mask is not None:
|
396 |
mask_type = 1
|
397 |
-
assert window_mask.dtype ==
|
398 |
assert window_mask.is_cuda
|
399 |
assert window_mask.dim() == 4
|
400 |
assert window_mask.shape == (batch, 1, seqlen_q, window_size)
|
401 |
if window_mask.stride(-1) != 1:
|
402 |
window_mask = window_mask.contiguous()
|
403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
(window_mask.stride(0), window_mask.stride(2))
|
405 |
if mask_type == 1 else
|
406 |
(0, 0)
|
@@ -416,20 +1446,16 @@ def triton_eva_agg_fwd(q, k, v, rfa_k, rfa_v, window_mask, softmax_scale, window
|
|
416 |
if empty_rfa_kv == 0 else
|
417 |
(0, 0, 0)
|
418 |
)
|
419 |
-
assert chunks_per_window > 0, "chunks_per_window must be greater than 0"
|
420 |
|
421 |
o = torch.empty_like(q)
|
|
|
422 |
|
423 |
BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16)
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
assert chunks_per_window >= BLOCK, "chunks_per_window must be greater than BLOCK"
|
430 |
-
# WINDOW_MASK_TYPE:
|
431 |
-
# - 0: regular causal mask, simply None
|
432 |
-
# - 1: the shape must be B, 1, W, I, J
|
433 |
|
434 |
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
435 |
_fwd_eva_agg_kernel[grid](
|
@@ -439,31 +1465,302 @@ def triton_eva_agg_fwd(q, k, v, rfa_k, rfa_v, window_mask, softmax_scale, window
|
|
439 |
rfa_k,
|
440 |
rfa_v,
|
441 |
window_mask,
|
|
|
442 |
o,
|
|
|
443 |
softmax_scale,
|
444 |
q.stride(0), q.stride(1), q.stride(2),
|
445 |
k.stride(0), k.stride(1), k.stride(2),
|
446 |
v.stride(0), v.stride(1), v.stride(2),
|
447 |
rfa_k_strides[0], rfa_k_strides[1], rfa_k_strides[2],
|
448 |
rfa_v_strides[0], rfa_v_strides[1], rfa_v_strides[2],
|
449 |
-
|
|
|
450 |
o.stride(0), o.stride(1), o.stride(2),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
nheads,
|
452 |
seqlen_q,
|
453 |
seqlen_k,
|
454 |
nchunks,
|
455 |
head_dim,
|
456 |
-
seqlen_q // 32,
|
457 |
-
seqlen_k // 32,
|
458 |
-
nchunks // 32,
|
459 |
chunks_per_window,
|
460 |
window_size,
|
461 |
mask_type,
|
462 |
empty_rfa_kv,
|
463 |
BLOCK_HEADDIM,
|
464 |
-
BLOCK_M=
|
465 |
-
BLOCK_N=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
num_warps=num_warps,
|
467 |
-
num_stages=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
)
|
469 |
-
return o
|
|
|
4 |
import triton
|
5 |
import triton.language as tl
|
6 |
|
7 |
+
@triton.heuristics(
|
8 |
+
{
|
9 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
10 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
11 |
+
"EVEN_W": lambda args: args["WINDOW_SIZE"] % args["BLOCK_N"] == 0,
|
12 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
13 |
+
}
|
14 |
+
)
|
15 |
+
@triton.jit
|
16 |
+
def _bwd_eva_agg_kernel_dkdv(
|
17 |
+
Q,
|
18 |
+
K,
|
19 |
+
V,
|
20 |
+
WindowMask,
|
21 |
+
DO,
|
22 |
+
LSE,
|
23 |
+
DO_T_O,
|
24 |
+
DK,
|
25 |
+
DV,
|
26 |
+
softmax_scale,
|
27 |
+
stride_qb, stride_qh, stride_qm,
|
28 |
+
stride_kb, stride_kh, stride_kn,
|
29 |
+
stride_vb, stride_vh, stride_vn,
|
30 |
+
stride_window_mask_b, stride_window_mask_m,
|
31 |
+
stride_do_b, stride_do_h, stride_do_m,
|
32 |
+
stride_lse_b, stride_lse_h,
|
33 |
+
stride_do_t_o_b, stride_do_t_o_h,
|
34 |
+
stride_dk_b, stride_dk_h, stride_dk_n,
|
35 |
+
stride_dv_b, stride_dv_h, stride_dv_n,
|
36 |
+
nheads,
|
37 |
+
seqlen_q,
|
38 |
+
seqlen_k,
|
39 |
+
headdim,
|
40 |
+
WINDOW_SIZE: tl.constexpr,
|
41 |
+
MASK_TYPE: tl.constexpr,
|
42 |
+
BLOCK_HEADDIM: tl.constexpr,
|
43 |
+
EVEN_M: tl.constexpr,
|
44 |
+
EVEN_N: tl.constexpr,
|
45 |
+
EVEN_W: tl.constexpr,
|
46 |
+
EVEN_HEADDIM: tl.constexpr,
|
47 |
+
BLOCK_M: tl.constexpr,
|
48 |
+
BLOCK_N: tl.constexpr,
|
49 |
+
):
|
50 |
+
off_bh = tl.program_id(1)
|
51 |
+
off_h = off_bh % nheads
|
52 |
+
off_b = off_bh // nheads
|
53 |
+
|
54 |
+
start_n = tl.program_id(0)
|
55 |
+
# determine which window the current KV block belongs to
|
56 |
+
offs_w = (start_n * BLOCK_N) // WINDOW_SIZE
|
57 |
+
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
58 |
+
offs_m = tl.arange(0, BLOCK_M)
|
59 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
60 |
+
|
61 |
+
# initialize pointers
|
62 |
+
q_ptrs = (
|
63 |
+
Q +
|
64 |
+
off_b * stride_qb +
|
65 |
+
off_h * stride_qh +
|
66 |
+
offs_m[:, None] * stride_qm + offs_d[None, :]
|
67 |
+
)
|
68 |
+
k_ptrs = (
|
69 |
+
K +
|
70 |
+
off_b * stride_kb +
|
71 |
+
off_h * stride_kh +
|
72 |
+
offs_n[:, None] * stride_kn + offs_d[None, :]
|
73 |
+
)
|
74 |
+
v_ptrs = (
|
75 |
+
V +
|
76 |
+
off_b * stride_vb +
|
77 |
+
off_h * stride_vh +
|
78 |
+
offs_n[:, None] * stride_vn + offs_d[None, :]
|
79 |
+
)
|
80 |
+
do_ptrs = (
|
81 |
+
DO +
|
82 |
+
off_b * stride_do_b +
|
83 |
+
off_h * stride_do_h +
|
84 |
+
offs_m[:, None] * stride_do_m + offs_d[None, :]
|
85 |
+
)
|
86 |
+
do_t_o_ptrs = (
|
87 |
+
DO_T_O +
|
88 |
+
off_b * stride_do_t_o_b +
|
89 |
+
off_h * stride_do_t_o_h +
|
90 |
+
offs_m[:, None]
|
91 |
+
)
|
92 |
+
lse_ptrs = (
|
93 |
+
LSE +
|
94 |
+
off_b * stride_lse_b +
|
95 |
+
off_h * stride_lse_h +
|
96 |
+
offs_m[:, None]
|
97 |
+
)
|
98 |
+
if MASK_TYPE == 1:
|
99 |
+
m_ptrs = (
|
100 |
+
WindowMask +
|
101 |
+
off_b * stride_window_mask_b +
|
102 |
+
(offs_m[:, None] * stride_window_mask_m + offs_n[None, :])
|
103 |
+
)
|
104 |
+
dk_ptrs = (
|
105 |
+
DK +
|
106 |
+
off_b * stride_dk_b +
|
107 |
+
off_h * stride_dk_h +
|
108 |
+
offs_n[:, None] * stride_dk_n + offs_d[None, :]
|
109 |
+
)
|
110 |
+
dv_ptrs = (
|
111 |
+
DV +
|
112 |
+
off_b * stride_dv_b +
|
113 |
+
off_h * stride_dv_h +
|
114 |
+
offs_n[:, None] * stride_dv_n + offs_d[None, :]
|
115 |
+
)
|
116 |
+
|
117 |
+
# 1. for singletons
|
118 |
+
# determine start and end of query block
|
119 |
+
begin_m = ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
|
120 |
+
end_m = tl.minimum((offs_w + 1) * WINDOW_SIZE, seqlen_q)
|
121 |
+
|
122 |
+
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
123 |
+
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
124 |
+
if EVEN_N & EVEN_M:
|
125 |
+
if EVEN_HEADDIM:
|
126 |
+
k = tl.load(k_ptrs)
|
127 |
+
v = tl.load(v_ptrs)
|
128 |
+
else:
|
129 |
+
k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
130 |
+
v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
131 |
+
else:
|
132 |
+
if EVEN_HEADDIM:
|
133 |
+
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
134 |
+
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
135 |
+
else:
|
136 |
+
k = tl.load(
|
137 |
+
k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0
|
138 |
+
)
|
139 |
+
v = tl.load(
|
140 |
+
v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0
|
141 |
+
)
|
142 |
+
for start_m in range(begin_m, end_m, BLOCK_M):
|
143 |
+
start_m = tl.multiple_of(start_m, BLOCK_M)
|
144 |
+
# load q, do, and lse
|
145 |
+
if EVEN_M & EVEN_N:
|
146 |
+
if EVEN_HEADDIM:
|
147 |
+
q = tl.load(
|
148 |
+
q_ptrs + start_m * stride_qm
|
149 |
+
)
|
150 |
+
do = tl.load(
|
151 |
+
do_ptrs + start_m * stride_do_m
|
152 |
+
)
|
153 |
+
else:
|
154 |
+
q = tl.load(
|
155 |
+
q_ptrs + start_m * stride_qm,
|
156 |
+
mask=offs_d[None, :] < headdim,
|
157 |
+
other=0.0
|
158 |
+
)
|
159 |
+
do = tl.load(
|
160 |
+
do_ptrs + start_m * stride_do_m,
|
161 |
+
mask=offs_d[None, :] < headdim,
|
162 |
+
other=0.0
|
163 |
+
)
|
164 |
+
do_t_o = tl.load(
|
165 |
+
do_t_o_ptrs + start_m
|
166 |
+
)
|
167 |
+
lse = tl.load(
|
168 |
+
lse_ptrs + start_m
|
169 |
+
)
|
170 |
+
else:
|
171 |
+
if EVEN_HEADDIM:
|
172 |
+
q = tl.load(
|
173 |
+
q_ptrs + start_m * stride_qm,
|
174 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
175 |
+
other=0.0
|
176 |
+
)
|
177 |
+
do = tl.load(
|
178 |
+
do_ptrs + start_m * stride_do_m,
|
179 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
180 |
+
other=0.0
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
q = tl.load(
|
184 |
+
q_ptrs + start_m * stride_qm,
|
185 |
+
mask=((start_m + offs_m)[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
186 |
+
other=0.0
|
187 |
+
)
|
188 |
+
do = tl.load(
|
189 |
+
do_ptrs + start_m * stride_do_m,
|
190 |
+
mask=((start_m + offs_m)[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
191 |
+
other=0.0
|
192 |
+
)
|
193 |
+
do_t_o = tl.load(
|
194 |
+
do_t_o_ptrs + start_m,
|
195 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
196 |
+
other=0.0
|
197 |
+
)
|
198 |
+
lse = tl.load(
|
199 |
+
lse_ptrs + start_m,
|
200 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
201 |
+
other=0.0
|
202 |
+
)
|
203 |
+
lse = tl.where(lse == float("-inf"), 0.0, lse)
|
204 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
205 |
+
qk += tl.dot(q, tl.trans(k))
|
206 |
+
if not EVEN_M:
|
207 |
+
qk += tl.where((start_m + offs_m)[:, None] < seqlen_q, 0, float("-inf"))
|
208 |
+
|
209 |
+
if MASK_TYPE == 1:
|
210 |
+
if EVEN_M & EVEN_W:
|
211 |
+
mask = tl.load(
|
212 |
+
m_ptrs + (start_m * stride_window_mask_m) - (offs_w * WINDOW_SIZE)
|
213 |
+
)
|
214 |
+
else:
|
215 |
+
mask = tl.load(
|
216 |
+
m_ptrs + (start_m * stride_window_mask_m) - (offs_w * WINDOW_SIZE),
|
217 |
+
mask=((start_m + offs_m)[:, None] < seqlen_q)
|
218 |
+
& (((start_m * stride_window_mask_m) - (offs_w * WINDOW_SIZE) + offs_n)[None, :] < WINDOW_SIZE),
|
219 |
+
other=1,
|
220 |
+
)
|
221 |
+
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
222 |
+
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
223 |
+
# to multiply with softmax_scale here.
|
224 |
+
# we assume mask already implies the causal masking
|
225 |
+
qk = qk * softmax_scale
|
226 |
+
qk = tl.where(mask, float("-inf"), qk)
|
227 |
+
p = tl.exp(qk - lse)
|
228 |
+
else:
|
229 |
+
qk += tl.where((start_m + offs_m)[:, None] >= offs_n[None, :], 0, float("-inf"))
|
230 |
+
p = tl.exp(qk * softmax_scale - lse)
|
231 |
+
|
232 |
+
# dp [M, N]
|
233 |
+
dp = tl.dot(do, tl.trans(v))
|
234 |
+
# p [M, N], dp [M, N], do_t_o [M, 1] -> ds [M, N]
|
235 |
+
ds = (p * (dp - do_t_o) * softmax_scale).to(q.dtype)
|
236 |
+
# p is fp32 and [M, N], convert to q.dtype
|
237 |
+
# do [M, D] -> dv [N, D]
|
238 |
+
dv += tl.dot(tl.trans(p.to(do.dtype)), do)
|
239 |
+
# dk [N, D]
|
240 |
+
dk += tl.dot(tl.trans(ds), q)
|
241 |
+
if EVEN_N & EVEN_M:
|
242 |
+
if EVEN_HEADDIM:
|
243 |
+
tl.store(dv_ptrs, dv)
|
244 |
+
tl.store(dk_ptrs, dk)
|
245 |
+
else:
|
246 |
+
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
|
247 |
+
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
|
248 |
+
else:
|
249 |
+
if EVEN_HEADDIM:
|
250 |
+
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
251 |
+
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
252 |
+
else:
|
253 |
+
tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
254 |
+
tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
255 |
+
|
256 |
+
@triton.heuristics(
|
257 |
+
{
|
258 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
259 |
+
"EVEN_C": lambda args: args["nchunks"] % args["BLOCK_N"] == 0,
|
260 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
261 |
+
}
|
262 |
+
)
|
263 |
+
@triton.jit
|
264 |
+
def _bwd_eva_agg_kernel_drfa_kv(
|
265 |
+
Q,
|
266 |
+
RFA_K,
|
267 |
+
RFA_V,
|
268 |
+
ChunkMask,
|
269 |
+
DO,
|
270 |
+
LSE,
|
271 |
+
DO_T_O,
|
272 |
+
D_RFA_K,
|
273 |
+
D_RFA_V,
|
274 |
+
softmax_scale,
|
275 |
+
stride_qb, stride_qh, stride_qm,
|
276 |
+
stride_rfa_kb, stride_rfa_kh, stride_rfa_kc,
|
277 |
+
stride_rfa_vb, stride_rfa_vh, stride_rfa_vc,
|
278 |
+
stride_chunk_mask_b, stride_chunk_mask_m,
|
279 |
+
stride_do_b, stride_do_h, stride_do_m,
|
280 |
+
stride_lse_b, stride_lse_h,
|
281 |
+
stride_do_t_o_b, stride_do_t_o_h,
|
282 |
+
stride_d_rfa_k_b, stride_d_rfa_k_h, stride_d_rfa_k_c,
|
283 |
+
stride_d_rfa_v_b, stride_d_rfa_v_h, stride_d_rfa_v_c,
|
284 |
+
nheads,
|
285 |
+
seqlen_q,
|
286 |
+
nchunks,
|
287 |
+
headdim,
|
288 |
+
CHUNKS_PER_WINDOW: tl.constexpr,
|
289 |
+
WINDOW_SIZE: tl.constexpr,
|
290 |
+
MASK_TYPE: tl.constexpr,
|
291 |
+
BLOCK_HEADDIM: tl.constexpr,
|
292 |
+
EVEN_M: tl.constexpr,
|
293 |
+
EVEN_C: tl.constexpr,
|
294 |
+
EVEN_HEADDIM: tl.constexpr,
|
295 |
+
BLOCK_M: tl.constexpr,
|
296 |
+
BLOCK_N: tl.constexpr,
|
297 |
+
):
|
298 |
+
off_bh = tl.program_id(1)
|
299 |
+
off_h = off_bh % nheads
|
300 |
+
off_b = off_bh // nheads
|
301 |
+
start_c = tl.program_id(0)
|
302 |
+
# there are 128 chunks per window
|
303 |
+
offs_c = start_c * BLOCK_N + tl.arange(0, BLOCK_N)
|
304 |
+
# determine which window the current KV block belongs to
|
305 |
+
offs_w = (start_c * BLOCK_N) // CHUNKS_PER_WINDOW
|
306 |
+
offs_m = tl.arange(0, BLOCK_M)
|
307 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
308 |
+
|
309 |
+
# initialize pointers
|
310 |
+
q_ptrs = (
|
311 |
+
Q +
|
312 |
+
off_b * stride_qb +
|
313 |
+
off_h * stride_qh +
|
314 |
+
(offs_m[:, None] * stride_qm + offs_d[None, :])
|
315 |
+
)
|
316 |
+
do_ptrs = (
|
317 |
+
DO +
|
318 |
+
off_b * stride_do_b +
|
319 |
+
off_h * stride_do_h +
|
320 |
+
(offs_m[:, None] * stride_do_m + offs_d[None, :])
|
321 |
+
)
|
322 |
+
do_t_o_ptrs = (
|
323 |
+
DO_T_O +
|
324 |
+
off_b * stride_do_t_o_b +
|
325 |
+
off_h * stride_do_t_o_h +
|
326 |
+
(offs_m[:, None])
|
327 |
+
)
|
328 |
+
lse_ptrs = (
|
329 |
+
LSE +
|
330 |
+
off_b * stride_lse_b +
|
331 |
+
off_h * stride_lse_h +
|
332 |
+
(offs_m[:, None])
|
333 |
+
)
|
334 |
+
rfa_k_ptrs = (
|
335 |
+
RFA_K +
|
336 |
+
off_b * stride_rfa_kb +
|
337 |
+
off_h * stride_rfa_kh +
|
338 |
+
(offs_c[:, None] * stride_rfa_kc + offs_d[None, :])
|
339 |
+
)
|
340 |
+
rfa_v_ptrs = (
|
341 |
+
RFA_V +
|
342 |
+
off_b * stride_rfa_vb +
|
343 |
+
off_h * stride_rfa_vh +
|
344 |
+
(offs_c[:, None] * stride_rfa_vc + offs_d[None, :])
|
345 |
+
)
|
346 |
+
if MASK_TYPE == 1:
|
347 |
+
rfa_m_ptrs = (
|
348 |
+
ChunkMask +
|
349 |
+
off_b * stride_chunk_mask_b +
|
350 |
+
(offs_m[:, None] * stride_chunk_mask_m + offs_c[None, :])
|
351 |
+
)
|
352 |
+
d_rfa_k_ptrs = (
|
353 |
+
D_RFA_K +
|
354 |
+
off_b * stride_d_rfa_k_b +
|
355 |
+
off_h * stride_d_rfa_k_h +
|
356 |
+
(offs_c[:, None] * stride_d_rfa_k_c + offs_d[None, :])
|
357 |
+
)
|
358 |
+
d_rfa_v_ptrs = (
|
359 |
+
D_RFA_V +
|
360 |
+
off_b * stride_d_rfa_v_b +
|
361 |
+
off_h * stride_d_rfa_v_h +
|
362 |
+
(offs_c[:, None] * stride_d_rfa_v_c + offs_d[None, :])
|
363 |
+
)
|
364 |
+
|
365 |
+
d_rfa_k = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
366 |
+
d_rfa_v = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
367 |
+
if EVEN_C & EVEN_M:
|
368 |
+
if EVEN_HEADDIM:
|
369 |
+
rfa_k = tl.load(rfa_k_ptrs)
|
370 |
+
rfa_v = tl.load(rfa_v_ptrs)
|
371 |
+
else:
|
372 |
+
rfa_k = tl.load(rfa_k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
373 |
+
rfa_v = tl.load(rfa_v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
374 |
+
else:
|
375 |
+
if EVEN_HEADDIM:
|
376 |
+
rfa_k = tl.load(rfa_k_ptrs, mask=offs_c[:, None] < nchunks, other=0.0)
|
377 |
+
rfa_v = tl.load(rfa_v_ptrs, mask=offs_c[:, None] < nchunks, other=0.0)
|
378 |
+
else:
|
379 |
+
rfa_k = tl.load(
|
380 |
+
rfa_k_ptrs, mask=(offs_c[:, None] < nchunks) & (offs_d[None, :] < headdim), other=0.0
|
381 |
+
)
|
382 |
+
rfa_v = tl.load(
|
383 |
+
rfa_v_ptrs, mask=(offs_c[:, None] < nchunks) & (offs_d[None, :] < headdim), other=0.0
|
384 |
+
)
|
385 |
+
begin_m = tl.minimum((offs_w + 1) * WINDOW_SIZE, seqlen_q)
|
386 |
+
end_m = seqlen_q
|
387 |
+
for start_m in range(begin_m, end_m, BLOCK_M):
|
388 |
+
start_m = tl.multiple_of(start_m, BLOCK_M)
|
389 |
+
# load q, do, and lse
|
390 |
+
if EVEN_M:
|
391 |
+
if EVEN_HEADDIM:
|
392 |
+
q = tl.load(
|
393 |
+
q_ptrs + start_m * stride_qm
|
394 |
+
)
|
395 |
+
do = tl.load(
|
396 |
+
do_ptrs + start_m * stride_do_m
|
397 |
+
)
|
398 |
+
else:
|
399 |
+
q = tl.load(
|
400 |
+
q_ptrs + start_m * stride_qm,
|
401 |
+
mask=offs_d[None, :] < headdim,
|
402 |
+
other=0.0
|
403 |
+
)
|
404 |
+
do = tl.load(
|
405 |
+
do_ptrs + start_m * stride_do_m,
|
406 |
+
mask=offs_d[None, :] < headdim,
|
407 |
+
other=0.0
|
408 |
+
)
|
409 |
+
do_t_o = tl.load(
|
410 |
+
do_t_o_ptrs + start_m
|
411 |
+
)
|
412 |
+
lse = tl.load(
|
413 |
+
lse_ptrs + start_m
|
414 |
+
)
|
415 |
+
else:
|
416 |
+
if EVEN_HEADDIM:
|
417 |
+
q = tl.load(
|
418 |
+
q_ptrs + start_m * stride_qm,
|
419 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
420 |
+
other=0.0
|
421 |
+
)
|
422 |
+
do = tl.load(
|
423 |
+
do_ptrs + start_m * stride_do_m,
|
424 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
425 |
+
other=0.0
|
426 |
+
)
|
427 |
+
else:
|
428 |
+
q = tl.load(
|
429 |
+
q_ptrs + start_m * stride_qm,
|
430 |
+
mask=((start_m + offs_m)[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
431 |
+
other=0.0
|
432 |
+
)
|
433 |
+
do = tl.load(
|
434 |
+
do_ptrs + start_m * stride_do_m,
|
435 |
+
mask=((start_m + offs_m)[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
436 |
+
other=0.0
|
437 |
+
)
|
438 |
+
do_t_o = tl.load(
|
439 |
+
do_t_o_ptrs + start_m,
|
440 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
441 |
+
other=0.0
|
442 |
+
)
|
443 |
+
lse = tl.load(
|
444 |
+
lse_ptrs + start_m,
|
445 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
446 |
+
other=0.0
|
447 |
+
)
|
448 |
+
lse = tl.where(lse == float("-inf"), 0.0, lse)
|
449 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
450 |
+
qk += tl.dot(q, tl.trans(rfa_k))
|
451 |
+
if not EVEN_M:
|
452 |
+
qk += tl.where((start_m + offs_m)[:, None] < seqlen_q, 0, float("-inf"))
|
453 |
+
|
454 |
+
if MASK_TYPE == 1:
|
455 |
+
if EVEN_M & EVEN_C:
|
456 |
+
mask = tl.load(
|
457 |
+
rfa_m_ptrs + (start_m * stride_chunk_mask_m)
|
458 |
+
)
|
459 |
+
else:
|
460 |
+
mask = tl.load(
|
461 |
+
rfa_m_ptrs + (start_m * stride_chunk_mask_m),
|
462 |
+
mask=((start_m + offs_m)[:, None] < seqlen_q)
|
463 |
+
& (offs_c[None, :] < nchunks),
|
464 |
+
other=1,
|
465 |
+
)
|
466 |
+
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
467 |
+
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
468 |
+
# to multiply with softmax_scale here.
|
469 |
+
# we assume mask already implies the causal masking
|
470 |
+
qk = qk * softmax_scale
|
471 |
+
qk = tl.where(mask, float("-inf"), qk)
|
472 |
+
p = tl.exp(qk - lse)
|
473 |
+
else:
|
474 |
+
p = tl.exp(qk * softmax_scale - lse)
|
475 |
+
|
476 |
+
dp = tl.dot(do, tl.trans(rfa_v))
|
477 |
+
ds = (p * (dp - do_t_o) * softmax_scale).to(q.dtype)
|
478 |
+
# p is fp32, convert to q.dtype
|
479 |
+
d_rfa_v += tl.dot(tl.trans(p.to(do.dtype)), do)
|
480 |
+
# move softmax_scale to ds to save computation
|
481 |
+
d_rfa_k += tl.dot(tl.trans(ds), q)
|
482 |
+
if EVEN_C & EVEN_M:
|
483 |
+
if EVEN_HEADDIM:
|
484 |
+
tl.store(d_rfa_v_ptrs, d_rfa_v)
|
485 |
+
tl.store(d_rfa_k_ptrs, d_rfa_k)
|
486 |
+
else:
|
487 |
+
tl.store(d_rfa_v_ptrs, d_rfa_v, mask=offs_d[None, :] < headdim)
|
488 |
+
tl.store(d_rfa_k_ptrs, d_rfa_k, mask=offs_d[None, :] < headdim)
|
489 |
+
else:
|
490 |
+
if EVEN_HEADDIM:
|
491 |
+
tl.store(d_rfa_v_ptrs, d_rfa_v, mask=offs_c[:, None] < nchunks)
|
492 |
+
tl.store(d_rfa_k_ptrs, d_rfa_k, mask=offs_c[:, None] < nchunks)
|
493 |
+
else:
|
494 |
+
tl.store(d_rfa_v_ptrs, d_rfa_v, mask=(offs_c[:, None] < nchunks) & (offs_d[None, :] < headdim))
|
495 |
+
tl.store(d_rfa_k_ptrs, d_rfa_k, mask=(offs_c[:, None] < nchunks) & (offs_d[None, :] < headdim))
|
496 |
+
|
497 |
+
@triton.heuristics(
|
498 |
+
{
|
499 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
500 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
501 |
+
"EVEN_C": lambda args: args["nchunks"] % args["BLOCK_N"] == 0,
|
502 |
+
"EVEN_W": lambda args: args["WINDOW_SIZE"] % args["BLOCK_N"] == 0,
|
503 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
504 |
+
}
|
505 |
+
)
|
506 |
+
@triton.jit
|
507 |
+
def _bwd_eva_agg_kernel_dq(
|
508 |
+
Q,
|
509 |
+
K,
|
510 |
+
V,
|
511 |
+
RFA_K,
|
512 |
+
RFA_V,
|
513 |
+
WindowMask,
|
514 |
+
ChunkMask,
|
515 |
+
DO,
|
516 |
+
LSE,
|
517 |
+
DO_T_O,
|
518 |
+
DQ,
|
519 |
+
softmax_scale,
|
520 |
+
stride_qb, stride_qh, stride_qm,
|
521 |
+
stride_kb, stride_kh, stride_kn,
|
522 |
+
stride_vb, stride_vh, stride_vn,
|
523 |
+
stride_rfa_kb, stride_rfa_kh, stride_rfa_kc,
|
524 |
+
stride_rfa_vb, stride_rfa_vh, stride_rfa_vc,
|
525 |
+
stride_window_mask_b, stride_window_mask_m,
|
526 |
+
stride_chunk_mask_b, stride_chunk_mask_m,
|
527 |
+
stride_do_b, stride_do_h, stride_do_m,
|
528 |
+
stride_lse_b, stride_lse_h,
|
529 |
+
stride_do_t_o_b, stride_do_t_o_h,
|
530 |
+
stride_dq_b, stride_dq_h, stride_dq_m,
|
531 |
+
nheads,
|
532 |
+
seqlen_q,
|
533 |
+
seqlen_k,
|
534 |
+
nchunks,
|
535 |
+
headdim,
|
536 |
+
CHUNKS_PER_WINDOW: tl.constexpr,
|
537 |
+
WINDOW_SIZE: tl.constexpr,
|
538 |
+
MASK_TYPE: tl.constexpr,
|
539 |
+
EMPTY_RFA_KV: tl.constexpr,
|
540 |
+
BLOCK_HEADDIM: tl.constexpr,
|
541 |
+
EVEN_M: tl.constexpr,
|
542 |
+
EVEN_N: tl.constexpr,
|
543 |
+
EVEN_W: tl.constexpr,
|
544 |
+
EVEN_C: tl.constexpr,
|
545 |
+
EVEN_HEADDIM: tl.constexpr,
|
546 |
+
BLOCK_M: tl.constexpr,
|
547 |
+
BLOCK_N: tl.constexpr,
|
548 |
+
):
|
549 |
+
start_m = tl.program_id(0)
|
550 |
+
off_bh = tl.program_id(1)
|
551 |
+
off_h = off_bh % nheads
|
552 |
+
off_b = off_bh // nheads
|
553 |
+
# initialize offsets
|
554 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
555 |
+
offs_w = (start_m * BLOCK_M) // WINDOW_SIZE
|
556 |
+
offs_n = tl.arange(0, BLOCK_N)
|
557 |
+
offs_c = tl.arange(0, BLOCK_N)
|
558 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
559 |
+
# TODO: add paratheses or not
|
560 |
+
q_ptrs = (
|
561 |
+
Q +
|
562 |
+
off_b * stride_qb +
|
563 |
+
off_h * stride_qh +
|
564 |
+
(offs_m[:, None] * stride_qm + offs_d[None, :])
|
565 |
+
)
|
566 |
+
k_ptrs = (
|
567 |
+
K +
|
568 |
+
off_b * stride_kb +
|
569 |
+
off_h * stride_kh +
|
570 |
+
(offs_n[:, None] * stride_kn + offs_d[None, :])
|
571 |
+
)
|
572 |
+
v_ptrs = (
|
573 |
+
V +
|
574 |
+
off_b * stride_vb +
|
575 |
+
off_h * stride_vh +
|
576 |
+
(offs_n[:, None] * stride_vn + offs_d[None, :])
|
577 |
+
)
|
578 |
+
if EMPTY_RFA_KV == 0:
|
579 |
+
rfa_k_ptrs = (
|
580 |
+
RFA_K +
|
581 |
+
off_b * stride_rfa_kb +
|
582 |
+
off_h * stride_rfa_kh +
|
583 |
+
(offs_c[:, None] * stride_rfa_kc + offs_d[None, :])
|
584 |
+
)
|
585 |
+
rfa_v_ptrs = (
|
586 |
+
RFA_V +
|
587 |
+
off_b * stride_rfa_vb +
|
588 |
+
off_h * stride_rfa_vh +
|
589 |
+
(offs_c[:, None] * stride_rfa_vc + offs_d[None, :])
|
590 |
+
)
|
591 |
+
dq_ptrs = (
|
592 |
+
DQ +
|
593 |
+
off_b * stride_dq_b +
|
594 |
+
off_h * stride_dq_h +
|
595 |
+
(offs_m[:, None] * stride_dq_m + offs_d[None, :])
|
596 |
+
)
|
597 |
+
do_ptrs = (
|
598 |
+
DO +
|
599 |
+
off_b * stride_do_b +
|
600 |
+
off_h * stride_do_h +
|
601 |
+
(offs_m[:, None] * stride_do_m + offs_d[None, :])
|
602 |
+
)
|
603 |
+
do_t_o_ptrs = (
|
604 |
+
DO_T_O +
|
605 |
+
off_b * stride_do_t_o_b +
|
606 |
+
off_h * stride_do_t_o_h +
|
607 |
+
offs_m[:, None]
|
608 |
+
)
|
609 |
+
lse_ptrs = (
|
610 |
+
LSE +
|
611 |
+
off_b * stride_lse_b +
|
612 |
+
off_h * stride_lse_h +
|
613 |
+
offs_m[:, None]
|
614 |
+
)
|
615 |
+
### load q, do, do_t_o, lse ####
|
616 |
+
if EVEN_M:
|
617 |
+
if EVEN_HEADDIM:
|
618 |
+
q = tl.load(
|
619 |
+
q_ptrs
|
620 |
+
)
|
621 |
+
do = tl.load(
|
622 |
+
do_ptrs
|
623 |
+
)
|
624 |
+
else:
|
625 |
+
q = tl.load(
|
626 |
+
q_ptrs,
|
627 |
+
mask=offs_d[None, :] < headdim,
|
628 |
+
other=0.0
|
629 |
+
)
|
630 |
+
do = tl.load(
|
631 |
+
do_ptrs,
|
632 |
+
mask=offs_d[None, :] < headdim,
|
633 |
+
other=0.0
|
634 |
+
)
|
635 |
+
do_t_o = tl.load(
|
636 |
+
do_t_o_ptrs
|
637 |
+
)
|
638 |
+
lse = tl.load(
|
639 |
+
lse_ptrs
|
640 |
+
)
|
641 |
+
else:
|
642 |
+
if EVEN_HEADDIM:
|
643 |
+
q = tl.load(
|
644 |
+
q_ptrs,
|
645 |
+
mask=offs_m[:, None] < seqlen_q,
|
646 |
+
other=0.0
|
647 |
+
)
|
648 |
+
do = tl.load(
|
649 |
+
do_ptrs,
|
650 |
+
mask=offs_m[:, None] < seqlen_q,
|
651 |
+
other=0.0
|
652 |
+
)
|
653 |
+
else:
|
654 |
+
q = tl.load(
|
655 |
+
q_ptrs,
|
656 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
657 |
+
other=0.0
|
658 |
+
)
|
659 |
+
do = tl.load(
|
660 |
+
do_ptrs,
|
661 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
662 |
+
other=0.0
|
663 |
+
)
|
664 |
+
do_t_o = tl.load(
|
665 |
+
do_t_o_ptrs,
|
666 |
+
mask=offs_m[:, None] < seqlen_q,
|
667 |
+
other=0.0
|
668 |
+
)
|
669 |
+
lse = tl.load(
|
670 |
+
lse_ptrs,
|
671 |
+
mask=offs_m[:, None] < seqlen_q,
|
672 |
+
other=0.0
|
673 |
+
)
|
674 |
+
lse = tl.where(lse == float("-inf"), 0.0, lse)
|
675 |
+
lse *= 1.4426950408889634 # log2(e)
|
676 |
+
qk_scale = softmax_scale
|
677 |
+
qk_scale *= 1.4426950408889634 # log2(e)
|
678 |
+
if MASK_TYPE == 1:
|
679 |
+
window_mask_ptrs = (
|
680 |
+
WindowMask +
|
681 |
+
off_b * stride_window_mask_b +
|
682 |
+
(offs_m[:, None] * stride_window_mask_m + offs_n[None, :])
|
683 |
+
)
|
684 |
+
if EMPTY_RFA_KV == 0:
|
685 |
+
chunk_mask_ptrs = (
|
686 |
+
ChunkMask +
|
687 |
+
off_b * stride_chunk_mask_b +
|
688 |
+
(offs_m[:, None] * stride_chunk_mask_m + offs_c[None, :])
|
689 |
+
)
|
690 |
+
|
691 |
+
dq = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
692 |
+
# loop over k, v and update accumulator
|
693 |
+
# Iterate over local singletons;
|
694 |
+
# so we only iterate over blocks within the current window
|
695 |
+
start_idx_n = offs_w * WINDOW_SIZE
|
696 |
+
end_idx_n = tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
697 |
+
for start_n in range(start_idx_n, end_idx_n, BLOCK_N):
|
698 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
699 |
+
if EVEN_N & EVEN_M:
|
700 |
+
if EVEN_HEADDIM:
|
701 |
+
k = tl.load(
|
702 |
+
k_ptrs + start_n * stride_kn
|
703 |
+
)
|
704 |
+
else:
|
705 |
+
k = tl.load(
|
706 |
+
k_ptrs + start_n * stride_kn,
|
707 |
+
mask=offs_d[None, :] < headdim,
|
708 |
+
other=0.0
|
709 |
+
)
|
710 |
+
else:
|
711 |
+
if EVEN_HEADDIM:
|
712 |
+
k = tl.load(
|
713 |
+
k_ptrs + start_n * stride_kn,
|
714 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
715 |
+
other=0.0,
|
716 |
+
)
|
717 |
+
else:
|
718 |
+
k = tl.load(
|
719 |
+
k_ptrs + start_n * stride_kn,
|
720 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
721 |
+
other=0.0,
|
722 |
+
)
|
723 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
724 |
+
qk += tl.dot(q, tl.trans(k))
|
725 |
+
# Trying to combine the two masks seem to make the result wrong
|
726 |
+
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
727 |
+
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
|
728 |
+
|
729 |
+
if MASK_TYPE == 1:
|
730 |
+
if EVEN_M & EVEN_W:
|
731 |
+
window_mask = tl.load(
|
732 |
+
window_mask_ptrs + start_n - start_idx_n
|
733 |
+
)
|
734 |
+
else:
|
735 |
+
window_mask = tl.load(
|
736 |
+
window_mask_ptrs + start_n - start_idx_n,
|
737 |
+
mask=(offs_m[:, None] < seqlen_q)
|
738 |
+
& ((start_n - start_idx_n + offs_n)[None, :] < WINDOW_SIZE),
|
739 |
+
other=1,
|
740 |
+
)
|
741 |
+
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
742 |
+
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
743 |
+
# to multiply with softmax_scale here.
|
744 |
+
# we assume mask already implies the causal masking
|
745 |
+
qk = qk * qk_scale
|
746 |
+
qk = tl.where(window_mask, float("-inf"), qk)
|
747 |
+
p = tl.exp2(qk - lse)
|
748 |
+
else:
|
749 |
+
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
|
750 |
+
p = tl.exp2(qk * qk_scale - lse)
|
751 |
+
|
752 |
+
if EVEN_N & EVEN_M:
|
753 |
+
if EVEN_HEADDIM:
|
754 |
+
v = tl.load(
|
755 |
+
v_ptrs + start_n * stride_vn
|
756 |
+
)
|
757 |
+
else:
|
758 |
+
v = tl.load(
|
759 |
+
v_ptrs + start_n * stride_vn,
|
760 |
+
mask=offs_d[None, :] < headdim,
|
761 |
+
other=0.0
|
762 |
+
)
|
763 |
+
else:
|
764 |
+
if EVEN_HEADDIM:
|
765 |
+
v = tl.load(
|
766 |
+
v_ptrs + start_n * stride_vn,
|
767 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
768 |
+
other=0.0,
|
769 |
+
)
|
770 |
+
else:
|
771 |
+
v = tl.load(
|
772 |
+
v_ptrs + start_n * stride_vn,
|
773 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
774 |
+
other=0.0,
|
775 |
+
)
|
776 |
+
dp = tl.dot(do, tl.trans(v))
|
777 |
+
ds = (p * (dp - do_t_o) * softmax_scale).to(q.dtype)
|
778 |
+
dq += tl.dot(ds, k)
|
779 |
+
|
780 |
+
if EMPTY_RFA_KV == 0:
|
781 |
+
# Iterate over RFA chunks
|
782 |
+
# we only iterate over chunks before the current local singleton window
|
783 |
+
end_idx_c = tl.minimum(offs_w * CHUNKS_PER_WINDOW, nchunks)
|
784 |
+
for start_c in range(0, end_idx_c, BLOCK_N):
|
785 |
+
start_c = tl.multiple_of(start_c, BLOCK_N)
|
786 |
+
# -- compute qk ----
|
787 |
+
if EVEN_C & EVEN_M:
|
788 |
+
if EVEN_HEADDIM:
|
789 |
+
rfa_k = tl.load(
|
790 |
+
rfa_k_ptrs + start_c * stride_rfa_kc
|
791 |
+
)
|
792 |
+
else:
|
793 |
+
rfa_k = tl.load(
|
794 |
+
rfa_k_ptrs + start_c * stride_rfa_kc,
|
795 |
+
mask=offs_d[None, :] < headdim,
|
796 |
+
other=0.0
|
797 |
+
)
|
798 |
+
else:
|
799 |
+
if EVEN_HEADDIM:
|
800 |
+
rfa_k = tl.load(
|
801 |
+
rfa_k_ptrs + start_c * stride_rfa_kc,
|
802 |
+
mask=(start_c + offs_c)[:, None] < nchunks,
|
803 |
+
other=0.0,
|
804 |
+
)
|
805 |
+
else:
|
806 |
+
rfa_k = tl.load(
|
807 |
+
rfa_k_ptrs + start_c * stride_rfa_kc,
|
808 |
+
mask=((start_c + offs_c)[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
809 |
+
other=0.0,
|
810 |
+
)
|
811 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
812 |
+
qk += tl.dot(q, tl.trans(rfa_k))
|
813 |
+
# Trying to combine the two masks seem to make the result wrong
|
814 |
+
if not EVEN_C: # Need to mask out otherwise the softmax is wrong
|
815 |
+
qk += tl.where((start_c + offs_c)[None, :] < nchunks, 0, float("-inf"))
|
816 |
+
|
817 |
+
if MASK_TYPE == 1:
|
818 |
+
if EVEN_C & EVEN_M:
|
819 |
+
chunk_mask = tl.load(
|
820 |
+
chunk_mask_ptrs + start_c
|
821 |
+
)
|
822 |
+
else:
|
823 |
+
chunk_mask = tl.load(
|
824 |
+
chunk_mask_ptrs + start_c,
|
825 |
+
mask=(offs_m[:, None] < seqlen_q) & ((start_c + offs_c)[None, :] < nchunks),
|
826 |
+
other=1,
|
827 |
+
)
|
828 |
+
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
829 |
+
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
830 |
+
# to multiply with softmax_scale here.
|
831 |
+
# we assume mask already implies the causal masking
|
832 |
+
qk = qk * qk_scale
|
833 |
+
qk = tl.where(chunk_mask, float("-inf"), qk)
|
834 |
+
p = tl.exp2(qk - lse)
|
835 |
+
else:
|
836 |
+
p = tl.exp2(qk * qk_scale - lse)
|
837 |
+
|
838 |
+
if EVEN_C & EVEN_M:
|
839 |
+
if EVEN_HEADDIM:
|
840 |
+
rfa_v = tl.load(
|
841 |
+
rfa_v_ptrs + start_c * stride_rfa_vc
|
842 |
+
)
|
843 |
+
else:
|
844 |
+
rfa_v = tl.load(
|
845 |
+
rfa_v_ptrs + start_c * stride_rfa_vc,
|
846 |
+
mask=offs_d[None, :] < headdim,
|
847 |
+
other=0.0
|
848 |
+
)
|
849 |
+
else:
|
850 |
+
if EVEN_HEADDIM:
|
851 |
+
rfa_v = tl.load(
|
852 |
+
rfa_v_ptrs + start_c * stride_rfa_vc,
|
853 |
+
mask=(start_c + offs_n)[:, None] < nchunks,
|
854 |
+
other=0.0,
|
855 |
+
)
|
856 |
+
else:
|
857 |
+
rfa_v = tl.load(
|
858 |
+
rfa_v_ptrs + start_c * stride_rfa_vc,
|
859 |
+
mask=((start_c + offs_n)[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
860 |
+
other=0.0,
|
861 |
+
)
|
862 |
+
dp = tl.dot(do, tl.trans(rfa_v))
|
863 |
+
ds = (p * (dp - do_t_o) * softmax_scale).to(q.dtype)
|
864 |
+
dq += tl.dot(ds, rfa_k)
|
865 |
+
|
866 |
+
start_m = tl.program_id(0)
|
867 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
868 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
869 |
+
dq_ptrs = (
|
870 |
+
DQ +
|
871 |
+
off_b * stride_dq_b +
|
872 |
+
off_h * stride_dq_h +
|
873 |
+
(offs_m[:, None] * stride_dq_m + offs_d[None, :])
|
874 |
+
)
|
875 |
+
if EVEN_M:
|
876 |
+
if EVEN_HEADDIM:
|
877 |
+
tl.store(
|
878 |
+
dq_ptrs, dq
|
879 |
+
)
|
880 |
+
else:
|
881 |
+
tl.store(
|
882 |
+
dq_ptrs, dq,
|
883 |
+
mask=offs_d[None, :] < headdim
|
884 |
+
)
|
885 |
+
else:
|
886 |
+
if EVEN_HEADDIM:
|
887 |
+
tl.store(
|
888 |
+
dq_ptrs, dq,
|
889 |
+
mask=offs_m[:, None] < seqlen_q
|
890 |
+
)
|
891 |
+
else:
|
892 |
+
tl.store(
|
893 |
+
dq_ptrs, dq,
|
894 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)
|
895 |
+
)
|
896 |
+
|
897 |
+
_capability_90_config = {
|
898 |
+
"fwd": {
|
899 |
+
(torch.bfloat16, 64): (128, 128, 4, 3),
|
900 |
+
(torch.bfloat16, 128): (128, 128, 8, 3),
|
901 |
+
(torch.float32, 64): (128, 64, 8, 3),
|
902 |
+
(torch.float32, 128): (64, 32, 4, 3),
|
903 |
+
},
|
904 |
+
"bwd_dq": {
|
905 |
+
(torch.bfloat16, 64): (128, 64, 4, 3),
|
906 |
+
(torch.bfloat16, 128): (128, 64, 8, 3),
|
907 |
+
(torch.float32, 64): (128, 64, 8, 2),
|
908 |
+
(torch.float32, 128): (32, 32, 4, 2),
|
909 |
+
},
|
910 |
+
"bwd_dkdv": {
|
911 |
+
(torch.bfloat16, 64): (128, 64, 4, 2),
|
912 |
+
(torch.bfloat16, 128): (128, 64, 8, 2),
|
913 |
+
(torch.float32, 64): (128, 64, 8, 2),
|
914 |
+
(torch.float32, 128): (32, 32, 4, 1),
|
915 |
+
},
|
916 |
+
"bwd_drfa_kv": {
|
917 |
+
(torch.bfloat16, 64): (128, 64, 4, 2),
|
918 |
+
(torch.bfloat16, 128): (128, 64, 8, 2),
|
919 |
+
(torch.float32, 64): (128, 64, 8, 2),
|
920 |
+
(torch.float32, 128): (32, 32, 4, 1),
|
921 |
+
}
|
922 |
+
}
|
923 |
+
|
924 |
+
_capability_80_config = {
|
925 |
+
"fwd": {
|
926 |
+
(torch.bfloat16, 64): (64, 64, 4, 3),
|
927 |
+
(torch.bfloat16, 128): (64, 64, 8, 3),
|
928 |
+
(torch.float32, 64): (64, 32, 4, 2),
|
929 |
+
(torch.float32, 128): (64, 32, 8, 1),
|
930 |
+
},
|
931 |
+
"bwd_dq": {
|
932 |
+
(torch.bfloat16, 64): (64, 64, 4, 3),
|
933 |
+
(torch.bfloat16, 128): (64, 32, 4, 2),
|
934 |
+
(torch.float32, 64): (32, 32, 4, 2),
|
935 |
+
(torch.float32, 128): (32, 32, 4, 2),
|
936 |
+
},
|
937 |
+
"bwd_dkdv": {
|
938 |
+
(torch.bfloat16, 64): (64, 64, 4, 3),
|
939 |
+
(torch.bfloat16, 128): (32, 32, 4, 2),
|
940 |
+
(torch.float32, 64): (32, 32, 4, 1),
|
941 |
+
(torch.float32, 128): (16, 64, 8, 1),
|
942 |
+
},
|
943 |
+
"bwd_drfa_kv": {
|
944 |
+
(torch.bfloat16, 64): (64, 64, 4, 3),
|
945 |
+
(torch.bfloat16, 128): (64, 32, 4, 3),
|
946 |
+
(torch.float32, 64): (32, 32, 4, 1),
|
947 |
+
(torch.float32, 128): (32, 32, 4, 1),
|
948 |
+
}
|
949 |
+
}
|
950 |
+
|
951 |
+
def _get_config(dtype, head_dim, mode) -> tuple[int, int, int, int]:
|
952 |
+
capability = torch.cuda.get_device_capability()
|
953 |
+
if capability >= (9, 0):
|
954 |
+
kernel_config = _capability_90_config[mode].get((dtype, head_dim), (32, 32, 4, 1))
|
955 |
+
elif capability >= (8, 0):
|
956 |
+
kernel_config = _capability_80_config[mode].get((dtype, head_dim), (16, 16, 4, 1))
|
957 |
+
else:
|
958 |
+
if mode == "fwd":
|
959 |
+
if dtype == torch.float32:
|
960 |
+
kernel_config = (32, 16, 4, 2)
|
961 |
+
else:
|
962 |
+
kernel_config = (64, 32, 4, 2)
|
963 |
+
else:
|
964 |
+
if dtype == torch.float32:
|
965 |
+
kernel_config = (16, 16, 4, 1)
|
966 |
+
else:
|
967 |
+
kernel_config = (32, 32, 4, 1)
|
968 |
+
return kernel_config
|
969 |
+
|
970 |
@triton.heuristics(
|
971 |
{
|
972 |
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
|
|
984 |
RFA_K,
|
985 |
RFA_V,
|
986 |
WindowMask,
|
987 |
+
ChunkMask,
|
988 |
Out,
|
989 |
+
LSE,
|
990 |
softmax_scale,
|
991 |
stride_qb, stride_qh, stride_qm,
|
992 |
stride_kb, stride_kh, stride_kn,
|
993 |
stride_vb, stride_vh, stride_vn,
|
994 |
stride_rfa_kb, stride_rfa_kh, stride_rfa_kc,
|
995 |
stride_rfa_vb, stride_rfa_vh, stride_rfa_vc,
|
996 |
+
stride_window_mask_b, stride_window_mask_m,
|
997 |
+
stride_chunk_mask_b, stride_chunk_mask_m,
|
998 |
stride_ob, stride_oh, stride_om,
|
999 |
+
stride_lse_b, stride_lse_h,
|
1000 |
nheads,
|
1001 |
seqlen_q,
|
1002 |
seqlen_k,
|
1003 |
nchunks,
|
1004 |
headdim,
|
|
|
|
|
|
|
1005 |
CHUNKS_PER_WINDOW: tl.constexpr,
|
1006 |
WINDOW_SIZE: tl.constexpr,
|
1007 |
MASK_TYPE: tl.constexpr,
|
|
|
1061 |
qk_scale = softmax_scale
|
1062 |
qk_scale *= 1.4426950408889634 # log2(e)
|
1063 |
if MASK_TYPE == 1:
|
1064 |
+
window_mask_ptrs = (
|
1065 |
WindowMask +
|
1066 |
+
off_b * stride_window_mask_b +
|
1067 |
+
(offs_m[:, None] * stride_window_mask_m + offs_n[None, :])
|
1068 |
)
|
1069 |
+
if EMPTY_RFA_KV == 0:
|
1070 |
+
chunk_mask_ptrs = (
|
1071 |
+
ChunkMask +
|
1072 |
+
off_b * stride_chunk_mask_b +
|
1073 |
+
(offs_m[:, None] * stride_chunk_mask_m + offs_c[None, :])
|
1074 |
+
)
|
1075 |
+
|
1076 |
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
1077 |
d_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
1078 |
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
|
|
1143 |
|
1144 |
if MASK_TYPE == 1:
|
1145 |
if EVEN_M & EVEN_W:
|
1146 |
+
window_mask = tl.load(
|
1147 |
+
window_mask_ptrs + start_n - start_idx_n
|
1148 |
+
)
|
1149 |
else:
|
1150 |
+
window_mask = tl.load(
|
1151 |
+
window_mask_ptrs + start_n - start_idx_n,
|
1152 |
mask=(offs_m[:, None] < seqlen_q)
|
1153 |
& ((start_n - start_idx_n + offs_n)[None, :] < WINDOW_SIZE),
|
1154 |
+
other=1,
|
1155 |
+
)
|
1156 |
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
1157 |
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
1158 |
# to multiply with softmax_scale here.
|
1159 |
# we assume mask already implies the causal masking
|
1160 |
+
qk = qk * qk_scale
|
1161 |
+
qk = tl.where(window_mask, float("-inf"), qk)
|
1162 |
m_ij = tl.maximum(tl.max(qk, 1), m_i)
|
1163 |
+
masked_out_rows = (m_ij == float("-inf"))
|
1164 |
+
m_ij_masked = tl.where(masked_out_rows, 0, m_ij)
|
1165 |
+
p = tl.exp2(qk - m_ij_masked[:, None])
|
1166 |
else:
|
1167 |
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
|
1168 |
m_ij = tl.maximum(tl.max(qk, 1) * qk_scale, m_i)
|
1169 |
+
masked_out_rows = (m_ij == float("-inf"))
|
1170 |
+
m_ij_masked = tl.where(masked_out_rows, 0, m_ij)
|
1171 |
+
p = tl.exp2(qk * qk_scale - m_ij_masked[:, None])
|
1172 |
|
1173 |
d_ij = tl.sum(p, 1)
|
1174 |
|
1175 |
# scale acc_o
|
1176 |
+
prev_scale = tl.exp2(m_i - m_ij_masked)
|
1177 |
# # -- update output accumulator --
|
1178 |
acc_o = acc_o * prev_scale[:, None]
|
1179 |
# update acc_o
|
|
|
1245 |
if not EVEN_C: # Need to mask out otherwise the softmax is wrong
|
1246 |
qk += tl.where((start_c + offs_c)[None, :] < nchunks, 0, float("-inf"))
|
1247 |
|
1248 |
+
if MASK_TYPE == 1:
|
1249 |
+
if EVEN_C & EVEN_M:
|
1250 |
+
chunk_mask = tl.load(
|
1251 |
+
chunk_mask_ptrs + start_c
|
1252 |
+
)
|
1253 |
+
else:
|
1254 |
+
chunk_mask = tl.load(
|
1255 |
+
chunk_mask_ptrs + start_c,
|
1256 |
+
mask=(offs_m[:, None] < seqlen_q) & ((start_c + offs_c)[None, :] < nchunks),
|
1257 |
+
other=1,
|
1258 |
+
)
|
1259 |
+
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
1260 |
+
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
1261 |
+
# to multiply with softmax_scale here.
|
1262 |
+
# we assume mask already implies the causal masking
|
1263 |
+
qk = qk * qk_scale
|
1264 |
+
qk = tl.where(chunk_mask, float("-inf"), qk)
|
1265 |
+
m_ij = tl.maximum(tl.max(qk, 1), m_i)
|
1266 |
+
masked_out_rows = (m_ij == float("-inf"))
|
1267 |
+
m_ij_masked = tl.where(masked_out_rows, 0, m_ij)
|
1268 |
+
p = tl.exp2(qk - m_ij_masked[:, None])
|
1269 |
+
else:
|
1270 |
+
m_ij = tl.maximum(tl.max(qk, 1) * qk_scale, m_i)
|
1271 |
+
masked_out_rows = (m_ij == float("-inf"))
|
1272 |
+
m_ij_masked = tl.where(masked_out_rows, 0, m_ij)
|
1273 |
+
p = tl.exp2(qk * qk_scale - m_ij_masked[:, None])
|
1274 |
|
1275 |
d_ij = tl.sum(p, 1)
|
1276 |
|
1277 |
# scale acc_o
|
1278 |
+
prev_scale = tl.exp2(m_i - m_ij_masked)
|
1279 |
# # -- update output accumulator --
|
1280 |
acc_o = acc_o * prev_scale[:, None]
|
1281 |
# update acc_o
|
|
|
1311 |
d_i = d_i * prev_scale + d_ij
|
1312 |
m_i = m_ij
|
1313 |
|
1314 |
+
# for rows that are all -inf, set d_i to 1.0
|
1315 |
+
d_i = tl.where(d_i == 0.0, 1.0, d_i)
|
1316 |
+
# multiply by log(2)
|
1317 |
+
lse_m = (m_i + tl.math.log2(d_i)) * 0.6931471805599453
|
1318 |
acc_o = acc_o / d_i[:, None]
|
1319 |
# TODO: understand why rematerialize offsets to save registers?
|
1320 |
start_m = tl.program_id(0)
|
|
|
1347 |
out_ptrs, acc_o,
|
1348 |
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)
|
1349 |
)
|
1350 |
+
lse_ptrs = (
|
1351 |
+
LSE +
|
1352 |
+
off_b * stride_lse_b +
|
1353 |
+
off_h * stride_lse_h +
|
1354 |
+
offs_m
|
1355 |
+
)
|
1356 |
+
if EVEN_M:
|
1357 |
+
tl.store(
|
1358 |
+
lse_ptrs, lse_m,
|
1359 |
+
)
|
1360 |
+
else:
|
1361 |
+
tl.store(
|
1362 |
+
lse_ptrs, lse_m,
|
1363 |
+
mask=offs_m < seqlen_q
|
1364 |
+
)
|
1365 |
|
1366 |
+
def triton_eva_agg_fwd(
|
1367 |
+
q, k, v, rfa_k, rfa_v,
|
1368 |
+
window_mask,
|
1369 |
+
chunk_mask,
|
1370 |
+
softmax_scale,
|
1371 |
+
window_size,
|
1372 |
+
chunks_per_window
|
1373 |
+
):
|
1374 |
if rfa_k is None and rfa_v is None:
|
1375 |
empty_rfa_kv = 1
|
1376 |
|
|
|
1410 |
mask_type = 0
|
1411 |
if window_mask is not None:
|
1412 |
mask_type = 1
|
1413 |
+
assert window_mask.dtype == torch.bool
|
1414 |
assert window_mask.is_cuda
|
1415 |
assert window_mask.dim() == 4
|
1416 |
assert window_mask.shape == (batch, 1, seqlen_q, window_size)
|
1417 |
if window_mask.stride(-1) != 1:
|
1418 |
window_mask = window_mask.contiguous()
|
1419 |
+
|
1420 |
+
assert chunk_mask is not None
|
1421 |
+
assert chunk_mask.dtype == torch.bool
|
1422 |
+
assert chunk_mask.is_cuda
|
1423 |
+
assert chunk_mask.dim() == 4
|
1424 |
+
assert chunk_mask.shape == (batch, 1, seqlen_q, nchunks)
|
1425 |
+
if chunk_mask.stride(-1) != 1:
|
1426 |
+
chunk_mask = chunk_mask.contiguous()
|
1427 |
+
|
1428 |
+
chunk_mask_strides = (
|
1429 |
+
(chunk_mask.stride(0), chunk_mask.stride(2))
|
1430 |
+
if mask_type == 1 else
|
1431 |
+
(0, 0)
|
1432 |
+
)
|
1433 |
+
window_mask_strides = (
|
1434 |
(window_mask.stride(0), window_mask.stride(2))
|
1435 |
if mask_type == 1 else
|
1436 |
(0, 0)
|
|
|
1446 |
if empty_rfa_kv == 0 else
|
1447 |
(0, 0, 0)
|
1448 |
)
|
|
|
1449 |
|
1450 |
o = torch.empty_like(q)
|
1451 |
+
lse = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)
|
1452 |
|
1453 |
BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16)
|
1454 |
+
|
1455 |
+
BLOCK_M, BLOCK_N, num_warps, num_stages = _get_config(q.dtype, head_dim, "fwd")
|
1456 |
+
|
1457 |
+
assert chunks_per_window >= BLOCK_N, "chunks_per_window must be greater than BLOCK"
|
1458 |
+
assert chunks_per_window % BLOCK_N == 0, "chunks_per_window must be a multiple of BLOCK_N"
|
|
|
|
|
|
|
|
|
1459 |
|
1460 |
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
1461 |
_fwd_eva_agg_kernel[grid](
|
|
|
1465 |
rfa_k,
|
1466 |
rfa_v,
|
1467 |
window_mask,
|
1468 |
+
chunk_mask,
|
1469 |
o,
|
1470 |
+
lse,
|
1471 |
softmax_scale,
|
1472 |
q.stride(0), q.stride(1), q.stride(2),
|
1473 |
k.stride(0), k.stride(1), k.stride(2),
|
1474 |
v.stride(0), v.stride(1), v.stride(2),
|
1475 |
rfa_k_strides[0], rfa_k_strides[1], rfa_k_strides[2],
|
1476 |
rfa_v_strides[0], rfa_v_strides[1], rfa_v_strides[2],
|
1477 |
+
window_mask_strides[0], window_mask_strides[1],
|
1478 |
+
chunk_mask_strides[0], chunk_mask_strides[1],
|
1479 |
o.stride(0), o.stride(1), o.stride(2),
|
1480 |
+
lse.stride(0), lse.stride(1),
|
1481 |
+
nheads,
|
1482 |
+
seqlen_q,
|
1483 |
+
seqlen_k,
|
1484 |
+
nchunks,
|
1485 |
+
head_dim,
|
1486 |
+
chunks_per_window,
|
1487 |
+
window_size,
|
1488 |
+
mask_type,
|
1489 |
+
empty_rfa_kv,
|
1490 |
+
BLOCK_HEADDIM,
|
1491 |
+
BLOCK_M=BLOCK_M,
|
1492 |
+
BLOCK_N=BLOCK_N,
|
1493 |
+
num_warps=num_warps,
|
1494 |
+
num_stages=num_stages,
|
1495 |
+
)
|
1496 |
+
return o, lse
|
1497 |
+
|
1498 |
+
def triton_eva_agg_bwd(
|
1499 |
+
do,
|
1500 |
+
q, k, v, rfa_k, rfa_v,
|
1501 |
+
window_mask, chunk_mask,
|
1502 |
+
o, lse,
|
1503 |
+
dq, dk, dv, d_rfa_k, d_rfa_v,
|
1504 |
+
softmax_scale,
|
1505 |
+
window_size,
|
1506 |
+
chunks_per_window,
|
1507 |
+
empty_rfa_kv,
|
1508 |
+
mask_type,
|
1509 |
+
):
|
1510 |
+
if do.stride(-1) != 1:
|
1511 |
+
do = do.contiguous()
|
1512 |
+
|
1513 |
+
# shape constraints
|
1514 |
+
batch, nheads, seqlen_q, head_dim = q.shape
|
1515 |
+
_, _, seqlen_k, _ = k.shape
|
1516 |
+
if empty_rfa_kv == 0:
|
1517 |
+
nchunks = rfa_k.shape[-2]
|
1518 |
+
assert rfa_k.shape == (batch, nheads, nchunks, head_dim)
|
1519 |
+
assert rfa_v.shape == (batch, nheads, nchunks, head_dim)
|
1520 |
+
assert d_rfa_k.stride(-1) == d_rfa_v.stride(-1) == 1
|
1521 |
+
assert q.dtype == k.dtype == v.dtype == rfa_k.dtype == rfa_v.dtype
|
1522 |
+
else:
|
1523 |
+
nchunks = 0
|
1524 |
+
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same type"
|
1525 |
+
|
1526 |
+
assert lse.shape == (batch, nheads, seqlen_q)
|
1527 |
+
assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == rfa_k.stride(-1) == rfa_v.stride(-1) == 1
|
1528 |
+
assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
|
1529 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim)
|
1530 |
+
|
1531 |
+
assert head_dim <= 128, "We only test head dimensions up to 128"
|
1532 |
+
|
1533 |
+
window_mask_strides = (
|
1534 |
+
(window_mask.stride(0), window_mask.stride(2))
|
1535 |
+
if mask_type == 1 else
|
1536 |
+
(0, 0)
|
1537 |
+
)
|
1538 |
+
chunk_mask_strides = (
|
1539 |
+
(chunk_mask.stride(0), chunk_mask.stride(2))
|
1540 |
+
if mask_type == 1 else
|
1541 |
+
(0, 0)
|
1542 |
+
)
|
1543 |
+
|
1544 |
+
rfa_k_strides = (
|
1545 |
+
(rfa_k.stride(0), rfa_k.stride(1), rfa_k.stride(2))
|
1546 |
+
if empty_rfa_kv == 0 else
|
1547 |
+
(0, 0, 0)
|
1548 |
+
)
|
1549 |
+
rfa_v_strides = (
|
1550 |
+
(rfa_v.stride(0), rfa_v.stride(1), rfa_v.stride(2))
|
1551 |
+
if empty_rfa_kv == 0 else
|
1552 |
+
(0, 0, 0)
|
1553 |
+
)
|
1554 |
+
|
1555 |
+
d_rfa_k_strides = (
|
1556 |
+
(d_rfa_k.stride(0), d_rfa_k.stride(1), d_rfa_k.stride(2))
|
1557 |
+
if empty_rfa_kv == 0 else
|
1558 |
+
(0, 0, 0)
|
1559 |
+
)
|
1560 |
+
d_rfa_v_strides = (
|
1561 |
+
(d_rfa_v.stride(0), d_rfa_v.stride(1), d_rfa_v.stride(2))
|
1562 |
+
if empty_rfa_kv == 0 else
|
1563 |
+
(0, 0, 0)
|
1564 |
+
)
|
1565 |
+
|
1566 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16)
|
1567 |
+
|
1568 |
+
do_t_o = torch.sum(do.to(torch.float32) * o.to(torch.float32), dim=-1).to(do.dtype)
|
1569 |
+
|
1570 |
+
BLOCK_M, BLOCK_N, num_warps, num_stages = _get_config(q.dtype, head_dim, "bwd_dq")
|
1571 |
+
|
1572 |
+
assert chunks_per_window >= BLOCK_N, "chunks_per_window must be greater than BLOCK"
|
1573 |
+
assert chunks_per_window % BLOCK_N == 0, "chunks_per_window must be a multiple of BLOCK"
|
1574 |
+
grid = lambda META: (
|
1575 |
+
triton.cdiv(seqlen_q, META["BLOCK_M"]),
|
1576 |
+
batch * nheads,
|
1577 |
+
)
|
1578 |
+
_bwd_eva_agg_kernel_dq[grid](
|
1579 |
+
q,
|
1580 |
+
k,
|
1581 |
+
v,
|
1582 |
+
rfa_k,
|
1583 |
+
rfa_v,
|
1584 |
+
window_mask,
|
1585 |
+
chunk_mask,
|
1586 |
+
do,
|
1587 |
+
lse,
|
1588 |
+
do_t_o,
|
1589 |
+
dq,
|
1590 |
+
softmax_scale,
|
1591 |
+
q.stride(0), q.stride(1), q.stride(2),
|
1592 |
+
k.stride(0), k.stride(1), k.stride(2),
|
1593 |
+
v.stride(0), v.stride(1), v.stride(2),
|
1594 |
+
rfa_k_strides[0], rfa_k_strides[1], rfa_k_strides[2],
|
1595 |
+
rfa_v_strides[0], rfa_v_strides[1], rfa_v_strides[2],
|
1596 |
+
window_mask_strides[0], window_mask_strides[1],
|
1597 |
+
chunk_mask_strides[0], chunk_mask_strides[1],
|
1598 |
+
do.stride(0), do.stride(1), do.stride(2),
|
1599 |
+
lse.stride(0), lse.stride(1),
|
1600 |
+
do_t_o.stride(0), do_t_o.stride(1),
|
1601 |
+
dq.stride(0), dq.stride(1), dq.stride(2),
|
1602 |
nheads,
|
1603 |
seqlen_q,
|
1604 |
seqlen_k,
|
1605 |
nchunks,
|
1606 |
head_dim,
|
|
|
|
|
|
|
1607 |
chunks_per_window,
|
1608 |
window_size,
|
1609 |
mask_type,
|
1610 |
empty_rfa_kv,
|
1611 |
BLOCK_HEADDIM,
|
1612 |
+
BLOCK_M=BLOCK_M,
|
1613 |
+
BLOCK_N=BLOCK_N,
|
1614 |
+
num_warps=num_warps,
|
1615 |
+
num_stages=num_stages,
|
1616 |
+
)
|
1617 |
+
|
1618 |
+
BLOCK_M, BLOCK_N, num_warps, num_stages = _get_config(q.dtype, head_dim, "bwd_dkdv")
|
1619 |
+
grid = lambda META: (
|
1620 |
+
triton.cdiv(seqlen_k, META["BLOCK_N"]),
|
1621 |
+
batch * nheads,
|
1622 |
+
)
|
1623 |
+
_bwd_eva_agg_kernel_dkdv[grid](
|
1624 |
+
q,
|
1625 |
+
k,
|
1626 |
+
v,
|
1627 |
+
window_mask,
|
1628 |
+
do,
|
1629 |
+
lse,
|
1630 |
+
do_t_o,
|
1631 |
+
dk,
|
1632 |
+
dv,
|
1633 |
+
softmax_scale,
|
1634 |
+
q.stride(0), q.stride(1), q.stride(2),
|
1635 |
+
k.stride(0), k.stride(1), k.stride(2),
|
1636 |
+
v.stride(0), v.stride(1), v.stride(2),
|
1637 |
+
window_mask_strides[0], window_mask_strides[1],
|
1638 |
+
do.stride(0), do.stride(1), do.stride(2),
|
1639 |
+
lse.stride(0), lse.stride(1),
|
1640 |
+
do_t_o.stride(0), do_t_o.stride(1),
|
1641 |
+
dk.stride(0), dk.stride(1), dk.stride(2),
|
1642 |
+
dv.stride(0), dv.stride(1), dv.stride(2),
|
1643 |
+
nheads,
|
1644 |
+
seqlen_q,
|
1645 |
+
seqlen_k,
|
1646 |
+
head_dim,
|
1647 |
+
window_size,
|
1648 |
+
mask_type,
|
1649 |
+
BLOCK_HEADDIM,
|
1650 |
+
BLOCK_M=BLOCK_M,
|
1651 |
+
BLOCK_N=BLOCK_N,
|
1652 |
num_warps=num_warps,
|
1653 |
+
num_stages=num_stages,
|
1654 |
+
)
|
1655 |
+
if empty_rfa_kv == 0:
|
1656 |
+
BLOCK_M, BLOCK_N, num_warps, num_stages = _get_config(q.dtype, head_dim, "bwd_drfa_kv")
|
1657 |
+
grid = lambda META: (
|
1658 |
+
triton.cdiv(nchunks, META["BLOCK_N"]),
|
1659 |
+
batch * nheads,
|
1660 |
+
)
|
1661 |
+
_bwd_eva_agg_kernel_drfa_kv[grid](
|
1662 |
+
q,
|
1663 |
+
rfa_k,
|
1664 |
+
rfa_v,
|
1665 |
+
chunk_mask,
|
1666 |
+
do,
|
1667 |
+
lse,
|
1668 |
+
do_t_o,
|
1669 |
+
d_rfa_k,
|
1670 |
+
d_rfa_v,
|
1671 |
+
softmax_scale,
|
1672 |
+
q.stride(0), q.stride(1), q.stride(2),
|
1673 |
+
rfa_k_strides[0], rfa_k_strides[1], rfa_k_strides[2],
|
1674 |
+
rfa_v_strides[0], rfa_v_strides[1], rfa_v_strides[2],
|
1675 |
+
chunk_mask_strides[0], chunk_mask_strides[1],
|
1676 |
+
do.stride(0), do.stride(1), do.stride(2),
|
1677 |
+
lse.stride(0), lse.stride(1),
|
1678 |
+
do_t_o.stride(0), do_t_o.stride(1),
|
1679 |
+
d_rfa_k_strides[0], d_rfa_k_strides[1], d_rfa_k_strides[2],
|
1680 |
+
d_rfa_v_strides[0], d_rfa_v_strides[1], d_rfa_v_strides[2],
|
1681 |
+
nheads,
|
1682 |
+
seqlen_q,
|
1683 |
+
nchunks,
|
1684 |
+
head_dim,
|
1685 |
+
chunks_per_window,
|
1686 |
+
window_size,
|
1687 |
+
mask_type,
|
1688 |
+
BLOCK_HEADDIM,
|
1689 |
+
BLOCK_M=BLOCK_M,
|
1690 |
+
BLOCK_N=BLOCK_N,
|
1691 |
+
num_warps=num_warps,
|
1692 |
+
num_stages=num_stages,
|
1693 |
+
)
|
1694 |
+
|
1695 |
+
|
1696 |
+
class EvaAggFunc(torch.autograd.Function):
|
1697 |
+
@staticmethod
|
1698 |
+
def forward(ctx, q, k, v, rfa_k, rfa_v, window_mask, chunk_mask, softmax_scale=None, window_size=None, chunks_per_window=None):
|
1699 |
+
if rfa_k is None and rfa_v is None:
|
1700 |
+
empty_rfa_kv = 1
|
1701 |
+
else:
|
1702 |
+
assert rfa_k is not None and rfa_v is not None, "Both rfa_k and rfa_v must either be None or have values at the same time."
|
1703 |
+
empty_rfa_kv = 0
|
1704 |
+
|
1705 |
+
if window_mask is not None:
|
1706 |
+
mask_type = 1
|
1707 |
+
else:
|
1708 |
+
mask_type = 0
|
1709 |
+
o, lse = triton_eva_agg_fwd(
|
1710 |
+
q, k, v, rfa_k, rfa_v, window_mask, chunk_mask, softmax_scale, window_size, chunks_per_window
|
1711 |
+
)
|
1712 |
+
ctx.save_for_backward(q, k, v, o, lse, rfa_k, rfa_v, window_mask, chunk_mask)
|
1713 |
+
ctx.softmax_scale = softmax_scale
|
1714 |
+
ctx.window_size = window_size
|
1715 |
+
ctx.chunks_per_window = chunks_per_window
|
1716 |
+
ctx.empty_rfa_kv = empty_rfa_kv
|
1717 |
+
ctx.mask_type = mask_type
|
1718 |
+
return o
|
1719 |
+
|
1720 |
+
@staticmethod
|
1721 |
+
def backward(ctx, do):
|
1722 |
+
q, k, v, o, lse, rfa_k, rfa_v, window_mask, chunk_mask = ctx.saved_tensors
|
1723 |
+
dq = torch.empty_like(q)
|
1724 |
+
dk = torch.empty_like(k)
|
1725 |
+
dv = torch.empty_like(v)
|
1726 |
+
if ctx.empty_rfa_kv == 0:
|
1727 |
+
d_rfa_k = torch.empty_like(rfa_k)
|
1728 |
+
d_rfa_v = torch.empty_like(rfa_v)
|
1729 |
+
else:
|
1730 |
+
d_rfa_k = None
|
1731 |
+
d_rfa_v = None
|
1732 |
+
triton_eva_agg_bwd(
|
1733 |
+
do,
|
1734 |
+
q,
|
1735 |
+
k,
|
1736 |
+
v,
|
1737 |
+
rfa_k,
|
1738 |
+
rfa_v,
|
1739 |
+
window_mask,
|
1740 |
+
chunk_mask,
|
1741 |
+
o,
|
1742 |
+
lse,
|
1743 |
+
dq,
|
1744 |
+
dk,
|
1745 |
+
dv,
|
1746 |
+
d_rfa_k,
|
1747 |
+
d_rfa_v,
|
1748 |
+
softmax_scale=ctx.softmax_scale,
|
1749 |
+
window_size=ctx.window_size,
|
1750 |
+
chunks_per_window=ctx.chunks_per_window,
|
1751 |
+
empty_rfa_kv=ctx.empty_rfa_kv,
|
1752 |
+
mask_type=ctx.mask_type,
|
1753 |
+
)
|
1754 |
+
return dq, dk, dv, d_rfa_k, d_rfa_v, None, None, None, None, None
|
1755 |
+
|
1756 |
+
|
1757 |
+
def eva_agg_func_triton(
|
1758 |
+
q, k, v, rfa_k, rfa_v,
|
1759 |
+
window_mask, chunk_mask,
|
1760 |
+
softmax_scale=None, window_size=None, chunks_per_window=None,
|
1761 |
+
):
|
1762 |
+
return EvaAggFunc.apply(
|
1763 |
+
q, k, v, rfa_k, rfa_v,
|
1764 |
+
window_mask, chunk_mask,
|
1765 |
+
softmax_scale, window_size, chunks_per_window,
|
1766 |
)
|
|
eva_prep_kv_kernel.py
CHANGED
@@ -16,7 +16,7 @@ def _fwd_eva_prep_kv_kernel(
|
|
16 |
V, # [b, h, n, d]
|
17 |
PARAM_MU, # [1, h, 1, 1, d]
|
18 |
PARAM_PHI, # [1, h, 1, 1, d]
|
19 |
-
|
20 |
Out_RFA_K, # [b, h, c, d]
|
21 |
Out_RFA_V, # [b, h, c, d]
|
22 |
softmax_scale,
|
@@ -31,8 +31,6 @@ def _fwd_eva_prep_kv_kernel(
|
|
31 |
seqlen,
|
32 |
nchunks,
|
33 |
headdim,
|
34 |
-
CACHE_KEY_SEQLEN, # TODO: why keeping this
|
35 |
-
CACHE_KEY_NCHUNKS, # TODO: why keeping this
|
36 |
CHUNKS_PER_BLOCK: tl.constexpr,
|
37 |
CHUNK_SIZE: tl.constexpr,
|
38 |
MASK_TYPE: tl.constexpr,
|
@@ -91,7 +89,7 @@ def _fwd_eva_prep_kv_kernel(
|
|
91 |
log2e = 1.4426950408889634
|
92 |
if MASK_TYPE == 1:
|
93 |
m_ptrs = (
|
94 |
-
|
95 |
offs_b * stride_mb +
|
96 |
(
|
97 |
(
|
@@ -144,7 +142,7 @@ def _fwd_eva_prep_kv_kernel(
|
|
144 |
if EVEN_N:
|
145 |
mask = tl.load(
|
146 |
m_ptrs
|
147 |
-
)
|
148 |
else:
|
149 |
mask = tl.load(
|
150 |
m_ptrs,
|
@@ -153,12 +151,17 @@ def _fwd_eva_prep_kv_kernel(
|
|
153 |
offs_c[:, None] * CHUNK_SIZE +
|
154 |
offs_m[None, :]
|
155 |
) < seqlen,
|
156 |
-
other=
|
157 |
-
)
|
158 |
-
rfa_k_c_w =
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
162 |
rfa_k_c = tl.sum(k * rfa_k_c_w[:, :, None].to(k.dtype), axis=-2)
|
163 |
# TODO: understand why rematerialize offsets to save registers?
|
164 |
offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK)
|
@@ -209,7 +212,7 @@ def _fwd_eva_prep_kv_kernel(
|
|
209 |
)
|
210 |
|
211 |
if MASK_TYPE == 1:
|
212 |
-
rfa_v_c_w =
|
213 |
|
214 |
if EVEN_N:
|
215 |
if EVEN_HEADDIM:
|
@@ -246,8 +249,14 @@ def _fwd_eva_prep_kv_kernel(
|
|
246 |
other=0.0
|
247 |
)
|
248 |
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
rfa_v_c = tl.sum(v * rfa_v_c_w[:, :, None].to(v.dtype), axis=-2)
|
252 |
|
253 |
offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK)
|
@@ -279,7 +288,529 @@ def _fwd_eva_prep_kv_kernel(
|
|
279 |
mask=(offs_out_c[:, None] < nchunks) & (offs_d[None, :] < headdim)
|
280 |
)
|
281 |
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
k, v, param_mu, param_phi = [
|
284 |
x if x.stride(-1) == 1 else x.contiguous()
|
285 |
for x in [k, v, param_mu, param_phi]
|
@@ -300,16 +831,16 @@ def triton_eva_prep_kv_fwd(k, v, param_mu, param_phi, chunk_mask, softmax_scale,
|
|
300 |
softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim)
|
301 |
|
302 |
mask_type = 0
|
303 |
-
if
|
304 |
mask_type = 1
|
305 |
-
assert
|
306 |
-
assert
|
307 |
-
assert
|
308 |
-
assert
|
309 |
-
if
|
310 |
-
|
311 |
mask_strides = (
|
312 |
-
(
|
313 |
if mask_type == 1 else
|
314 |
(0, 0)
|
315 |
)
|
@@ -329,7 +860,7 @@ def triton_eva_prep_kv_fwd(k, v, param_mu, param_phi, chunk_mask, softmax_scale,
|
|
329 |
v,
|
330 |
param_mu,
|
331 |
param_phi,
|
332 |
-
|
333 |
out_rfa_k,
|
334 |
out_rfa_v,
|
335 |
softmax_scale,
|
@@ -344,8 +875,6 @@ def triton_eva_prep_kv_fwd(k, v, param_mu, param_phi, chunk_mask, softmax_scale,
|
|
344 |
seqlen,
|
345 |
nchunks,
|
346 |
head_dim,
|
347 |
-
seqlen // 32,
|
348 |
-
nchunks // 32,
|
349 |
chunks_per_block,
|
350 |
chunksize,
|
351 |
mask_type,
|
@@ -355,3 +884,134 @@ def triton_eva_prep_kv_fwd(k, v, param_mu, param_phi, chunk_mask, softmax_scale,
|
|
355 |
num_stages=1,
|
356 |
)
|
357 |
return out_rfa_k, out_rfa_v
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
V, # [b, h, n, d]
|
17 |
PARAM_MU, # [1, h, 1, 1, d]
|
18 |
PARAM_PHI, # [1, h, 1, 1, d]
|
19 |
+
Mask, # [b, h, n, 1]
|
20 |
Out_RFA_K, # [b, h, c, d]
|
21 |
Out_RFA_V, # [b, h, c, d]
|
22 |
softmax_scale,
|
|
|
31 |
seqlen,
|
32 |
nchunks,
|
33 |
headdim,
|
|
|
|
|
34 |
CHUNKS_PER_BLOCK: tl.constexpr,
|
35 |
CHUNK_SIZE: tl.constexpr,
|
36 |
MASK_TYPE: tl.constexpr,
|
|
|
89 |
log2e = 1.4426950408889634
|
90 |
if MASK_TYPE == 1:
|
91 |
m_ptrs = (
|
92 |
+
Mask +
|
93 |
offs_b * stride_mb +
|
94 |
(
|
95 |
(
|
|
|
142 |
if EVEN_N:
|
143 |
mask = tl.load(
|
144 |
m_ptrs
|
145 |
+
)
|
146 |
else:
|
147 |
mask = tl.load(
|
148 |
m_ptrs,
|
|
|
151 |
offs_c[:, None] * CHUNK_SIZE +
|
152 |
offs_m[None, :]
|
153 |
) < seqlen,
|
154 |
+
other=1,
|
155 |
+
)
|
156 |
+
rfa_k_c_w = tl.where(mask, float("-inf"), rfa_k_c_w)
|
157 |
+
|
158 |
+
m_rfa_k_c_w = tl.max(rfa_k_c_w, axis=-1)
|
159 |
+
masked_out_rows_rfa_k = (m_rfa_k_c_w == float("-inf"))
|
160 |
+
m_rfa_k_c_w_masked = tl.where(masked_out_rows_rfa_k, 0, m_rfa_k_c_w)
|
161 |
+
rfa_k_c_w = tl.exp2(rfa_k_c_w - m_rfa_k_c_w_masked[:, None])
|
162 |
+
denom_k = tl.sum(rfa_k_c_w, axis=-1)
|
163 |
+
denom_k = tl.where(denom_k == 0.0, 1.0, denom_k)
|
164 |
+
rfa_k_c_w = rfa_k_c_w / denom_k[:, None]
|
165 |
rfa_k_c = tl.sum(k * rfa_k_c_w[:, :, None].to(k.dtype), axis=-2)
|
166 |
# TODO: understand why rematerialize offsets to save registers?
|
167 |
offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK)
|
|
|
212 |
)
|
213 |
|
214 |
if MASK_TYPE == 1:
|
215 |
+
rfa_v_c_w = tl.where(mask, float("-inf"), rfa_v_c_w)
|
216 |
|
217 |
if EVEN_N:
|
218 |
if EVEN_HEADDIM:
|
|
|
249 |
other=0.0
|
250 |
)
|
251 |
|
252 |
+
|
253 |
+
m_rfa_v_c_w = tl.max(rfa_v_c_w, axis=-1)
|
254 |
+
masked_out_rows_rfa_v = (m_rfa_v_c_w == float("-inf"))
|
255 |
+
m_rfa_v_c_w_masked = tl.where(masked_out_rows_rfa_v, 0, m_rfa_v_c_w)
|
256 |
+
rfa_v_c_w = tl.exp2(rfa_v_c_w - m_rfa_v_c_w_masked[:, None])
|
257 |
+
denom_v = tl.sum(rfa_v_c_w, axis=-1)
|
258 |
+
denom_v = tl.where(denom_v == 0.0, 1.0, denom_v)
|
259 |
+
rfa_v_c_w = rfa_v_c_w / denom_v[:, None]
|
260 |
rfa_v_c = tl.sum(v * rfa_v_c_w[:, :, None].to(v.dtype), axis=-2)
|
261 |
|
262 |
offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK)
|
|
|
288 |
mask=(offs_out_c[:, None] < nchunks) & (offs_d[None, :] < headdim)
|
289 |
)
|
290 |
|
291 |
+
|
292 |
+
|
293 |
+
@triton.heuristics(
|
294 |
+
{
|
295 |
+
"EVEN_N": lambda args: args["seqlen"] % args["BLOCK_N"] == 0,
|
296 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
297 |
+
}
|
298 |
+
)
|
299 |
+
@triton.jit
|
300 |
+
def _bwd_eva_prep_kv_kernel(
|
301 |
+
RFA_K, # [b, h, c, d]
|
302 |
+
RFA_V, # [b, h, c, d]
|
303 |
+
K, # [b, h, n, d]
|
304 |
+
V, # [b, h, n, d]
|
305 |
+
PARAM_MU, # [1, h, 1, 1, d]
|
306 |
+
PARAM_PHI, # [1, h, 1, 1, d]
|
307 |
+
Mask, # [b, h, n, 1]
|
308 |
+
D_RFA_K, # [b, h, c, d]
|
309 |
+
D_RFA_V, # [b, h, c, d]
|
310 |
+
D_K, # [b, h, n, d]
|
311 |
+
D_V, # [b, h, n, d]
|
312 |
+
D_PARAM_MU_PARTIAL, # [b, h, g, d]
|
313 |
+
D_PARAM_PHI_PARTIAL, # [b, h, g, d]
|
314 |
+
softmax_scale,
|
315 |
+
stride_rfa_k_b, stride_rfa_k_h, stride_rfa_k_c,
|
316 |
+
stride_rfa_v_b, stride_rfa_v_h, stride_rfa_v_c,
|
317 |
+
stride_kb, stride_kh, stride_kn,
|
318 |
+
stride_vb, stride_vh, stride_vn,
|
319 |
+
stride_mu_h,
|
320 |
+
stride_phi_h,
|
321 |
+
stride_mb, stride_mn,
|
322 |
+
stride_d_rfa_k_b, stride_d_rfa_k_h, stride_d_rfa_k_c,
|
323 |
+
stride_d_rfa_v_b, stride_d_rfa_v_h, stride_d_rfa_v_c,
|
324 |
+
stride_d_k_b, stride_d_k_h, stride_d_k_n,
|
325 |
+
stride_d_v_b, stride_d_v_h, stride_d_v_n,
|
326 |
+
stride_d_mu_b, stride_d_mu_h, stride_d_mu_g,
|
327 |
+
stride_d_phi_b, stride_d_phi_h, stride_d_phi_g,
|
328 |
+
nheads,
|
329 |
+
seqlen,
|
330 |
+
nchunks,
|
331 |
+
headdim,
|
332 |
+
CHUNKS_PER_BLOCK: tl.constexpr,
|
333 |
+
CHUNK_SIZE: tl.constexpr,
|
334 |
+
MASK_TYPE: tl.constexpr,
|
335 |
+
BLOCK_HEADDIM: tl.constexpr,
|
336 |
+
EVEN_N: tl.constexpr,
|
337 |
+
EVEN_HEADDIM: tl.constexpr,
|
338 |
+
BLOCK_N: tl.constexpr,
|
339 |
+
):
|
340 |
+
start_n = tl.program_id(0)
|
341 |
+
offs_bh = tl.program_id(1)
|
342 |
+
offs_h = offs_bh % nheads
|
343 |
+
offs_b = offs_bh // nheads
|
344 |
+
# initialize offsets
|
345 |
+
# we load BLOCK_N keys and values each time, and
|
346 |
+
# reshape it to [CHUNKS_PER_BLOCK, CHUNK_SIZE]
|
347 |
+
offs_c = tl.arange(0, CHUNKS_PER_BLOCK)
|
348 |
+
offs_m = tl.arange(0, CHUNK_SIZE)
|
349 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
350 |
+
|
351 |
+
offs_rfa_c = start_n * CHUNKS_PER_BLOCK + offs_c
|
352 |
+
|
353 |
+
k_ptrs = (
|
354 |
+
K +
|
355 |
+
offs_b * stride_kb +
|
356 |
+
offs_h * stride_kh +
|
357 |
+
(
|
358 |
+
(
|
359 |
+
start_n * BLOCK_N +
|
360 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
361 |
+
offs_m[None, :, None]
|
362 |
+
) * stride_kn +
|
363 |
+
offs_d[None, None, :]
|
364 |
+
)
|
365 |
+
)
|
366 |
+
rfa_k_ptrs = (
|
367 |
+
RFA_K +
|
368 |
+
offs_b * stride_rfa_k_b +
|
369 |
+
offs_h * stride_rfa_k_h +
|
370 |
+
(offs_rfa_c[:, None] * stride_rfa_k_c + offs_d[None, :])
|
371 |
+
)
|
372 |
+
rfa_v_ptrs = (
|
373 |
+
RFA_V +
|
374 |
+
offs_b * stride_rfa_v_b +
|
375 |
+
offs_h * stride_rfa_v_h +
|
376 |
+
(offs_rfa_c[:, None] * stride_rfa_v_c + offs_d[None, :])
|
377 |
+
)
|
378 |
+
|
379 |
+
d_rfa_k_ptrs = (
|
380 |
+
D_RFA_K +
|
381 |
+
offs_b * stride_d_rfa_k_b +
|
382 |
+
offs_h * stride_d_rfa_k_h +
|
383 |
+
(offs_rfa_c[:, None] * stride_d_rfa_k_c + offs_d[None, :])
|
384 |
+
)
|
385 |
+
d_rfa_v_ptrs = (
|
386 |
+
D_RFA_V +
|
387 |
+
offs_b * stride_d_rfa_v_b +
|
388 |
+
offs_h * stride_d_rfa_v_h +
|
389 |
+
(offs_rfa_c[:, None] * stride_d_rfa_v_c + offs_d[None, :])
|
390 |
+
)
|
391 |
+
|
392 |
+
param_mu_ptrs = (
|
393 |
+
PARAM_MU +
|
394 |
+
offs_h * stride_mu_h +
|
395 |
+
offs_d[None, None, :]
|
396 |
+
)
|
397 |
+
param_phi_ptrs = (
|
398 |
+
PARAM_PHI +
|
399 |
+
offs_h * stride_phi_h +
|
400 |
+
offs_d[None, None, :]
|
401 |
+
)
|
402 |
+
|
403 |
+
log2e = 1.4426950408889634
|
404 |
+
if MASK_TYPE == 1:
|
405 |
+
m_ptrs = (
|
406 |
+
Mask +
|
407 |
+
offs_b * stride_mb +
|
408 |
+
(
|
409 |
+
(
|
410 |
+
start_n * BLOCK_N +
|
411 |
+
offs_c[:, None] * CHUNK_SIZE +
|
412 |
+
offs_m[None, :]
|
413 |
+
) * stride_mn
|
414 |
+
)
|
415 |
+
)
|
416 |
+
if EVEN_N:
|
417 |
+
if EVEN_HEADDIM:
|
418 |
+
k = tl.load(
|
419 |
+
k_ptrs
|
420 |
+
)
|
421 |
+
else:
|
422 |
+
k = tl.load(
|
423 |
+
k_ptrs,
|
424 |
+
mask=offs_d[None, None, :] < headdim,
|
425 |
+
other=0.0
|
426 |
+
)
|
427 |
+
else:
|
428 |
+
if EVEN_HEADDIM:
|
429 |
+
k = tl.load(
|
430 |
+
k_ptrs,
|
431 |
+
mask=(
|
432 |
+
start_n * BLOCK_N +
|
433 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
434 |
+
offs_m[None, :, None]
|
435 |
+
) < seqlen,
|
436 |
+
other=0.0
|
437 |
+
)
|
438 |
+
else:
|
439 |
+
k = tl.load(
|
440 |
+
k_ptrs,
|
441 |
+
mask=(
|
442 |
+
(
|
443 |
+
start_n * BLOCK_N +
|
444 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
445 |
+
offs_m[None, :, None]
|
446 |
+
) < seqlen
|
447 |
+
) & (offs_d[None, None, :] < headdim),
|
448 |
+
other=0.0
|
449 |
+
)
|
450 |
+
|
451 |
+
if EVEN_N:
|
452 |
+
if EVEN_HEADDIM:
|
453 |
+
rfa_k = tl.load(
|
454 |
+
rfa_k_ptrs
|
455 |
+
)
|
456 |
+
else:
|
457 |
+
rfa_k = tl.load(
|
458 |
+
rfa_k_ptrs,
|
459 |
+
mask=offs_d[None, :] < headdim,
|
460 |
+
other=0.0
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
if EVEN_HEADDIM:
|
464 |
+
rfa_k = tl.load(
|
465 |
+
rfa_k_ptrs,
|
466 |
+
mask=offs_rfa_c[:, None] < nchunks,
|
467 |
+
other=0.0
|
468 |
+
)
|
469 |
+
else:
|
470 |
+
rfa_k = tl.load(
|
471 |
+
rfa_k_ptrs,
|
472 |
+
mask=(offs_rfa_c[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
473 |
+
other=0.0
|
474 |
+
)
|
475 |
+
|
476 |
+
if EVEN_N:
|
477 |
+
if EVEN_HEADDIM:
|
478 |
+
d_rfa_k = tl.load(
|
479 |
+
d_rfa_k_ptrs
|
480 |
+
)
|
481 |
+
else:
|
482 |
+
d_rfa_k = tl.load(
|
483 |
+
d_rfa_k_ptrs,
|
484 |
+
mask=offs_d[None, :] < headdim,
|
485 |
+
other=0.0
|
486 |
+
)
|
487 |
+
else:
|
488 |
+
if EVEN_HEADDIM:
|
489 |
+
d_rfa_k = tl.load(
|
490 |
+
d_rfa_k_ptrs,
|
491 |
+
mask=offs_rfa_c[:, None] < nchunks,
|
492 |
+
other=0.0
|
493 |
+
)
|
494 |
+
else:
|
495 |
+
d_rfa_k = tl.load(
|
496 |
+
d_rfa_k_ptrs,
|
497 |
+
mask=(offs_rfa_c[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
498 |
+
other=0.0
|
499 |
+
)
|
500 |
+
|
501 |
+
param_mu = tl.load(param_mu_ptrs).to(k.dtype)
|
502 |
+
mu_c_w = tl.zeros([CHUNKS_PER_BLOCK, CHUNK_SIZE], dtype=tl.float32)
|
503 |
+
mu_c_w += tl.sum(k * param_mu, axis=-1)
|
504 |
+
mu_c_w *= log2e
|
505 |
+
|
506 |
+
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
507 |
+
mu_c_w += tl.where(
|
508 |
+
(
|
509 |
+
start_n * BLOCK_N +
|
510 |
+
offs_c[:, None] * CHUNK_SIZE +
|
511 |
+
offs_m[None, :]
|
512 |
+
) < seqlen,
|
513 |
+
0,
|
514 |
+
float("-inf")
|
515 |
+
)
|
516 |
+
|
517 |
+
if MASK_TYPE == 1:
|
518 |
+
if EVEN_N:
|
519 |
+
mask = tl.load(
|
520 |
+
m_ptrs
|
521 |
+
)
|
522 |
+
else:
|
523 |
+
mask = tl.load(
|
524 |
+
m_ptrs,
|
525 |
+
mask=(
|
526 |
+
start_n * BLOCK_N +
|
527 |
+
offs_c[:, None] * CHUNK_SIZE +
|
528 |
+
offs_m[None, :]
|
529 |
+
) < seqlen,
|
530 |
+
other=1,
|
531 |
+
)
|
532 |
+
mu_c_w = tl.where(mask, float("-inf"), mu_c_w)
|
533 |
+
|
534 |
+
# [c, w]
|
535 |
+
m_mu_c_w = tl.max(mu_c_w, axis=-1)
|
536 |
+
masked_out_rows_mu = (m_mu_c_w == float("-inf"))
|
537 |
+
m_mu_c_w_masked = tl.where(masked_out_rows_mu, 0, m_mu_c_w)
|
538 |
+
mu_c_w = tl.exp2(mu_c_w - m_mu_c_w_masked[:, None])
|
539 |
+
denom_mu = tl.sum(mu_c_w, axis=-1)
|
540 |
+
denom_mu = tl.where(denom_mu == 0.0, 1.0, denom_mu)
|
541 |
+
mu_tilde_c_w = mu_c_w / denom_mu[:, None]
|
542 |
+
mu_tilde_c_w = mu_tilde_c_w.to(k.dtype)
|
543 |
+
# [c, d] [c, w, d] -> [c, w]
|
544 |
+
d_mu_tilde_c_w = tl.sum(d_rfa_k[:, None, :] * k, axis=-1)
|
545 |
+
# [c, d] [c, d] -> [c]
|
546 |
+
d_out_rfa_k_t_rfa_k = tl.sum(d_rfa_k * rfa_k, axis=-1)[:, None]
|
547 |
+
d_mu_c_w = (d_mu_tilde_c_w - d_out_rfa_k_t_rfa_k) * mu_tilde_c_w
|
548 |
+
|
549 |
+
# [c, w] [c, w, d] -> [d]
|
550 |
+
d_param_mu = tl.sum(tl.sum(d_mu_c_w[:, :, None] * k, axis=0), axis=0)
|
551 |
+
# [c, w] [c, d] + [c, w] [1, 1, d] -> [c, w, d]
|
552 |
+
d_k = mu_tilde_c_w[:, :, None] * d_rfa_k[:, None, :] + d_mu_c_w[:, :, None] * param_mu
|
553 |
+
|
554 |
+
d_param_mu_partial_ptrs = (
|
555 |
+
D_PARAM_MU_PARTIAL +
|
556 |
+
offs_b * stride_d_mu_b +
|
557 |
+
offs_h * stride_d_mu_h +
|
558 |
+
start_n * stride_d_mu_g +
|
559 |
+
offs_d
|
560 |
+
)
|
561 |
+
if EVEN_HEADDIM:
|
562 |
+
tl.store(
|
563 |
+
d_param_mu_partial_ptrs, d_param_mu
|
564 |
+
)
|
565 |
+
else:
|
566 |
+
tl.store(
|
567 |
+
d_param_mu_partial_ptrs, d_param_mu,
|
568 |
+
mask=offs_d < headdim
|
569 |
+
)
|
570 |
+
|
571 |
+
|
572 |
+
v_ptrs = (
|
573 |
+
V +
|
574 |
+
offs_b * stride_vb +
|
575 |
+
offs_h * stride_vh +
|
576 |
+
(
|
577 |
+
(
|
578 |
+
start_n * BLOCK_N +
|
579 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
580 |
+
offs_m[None, :, None]
|
581 |
+
) * stride_vn +
|
582 |
+
offs_d[None, None, :]
|
583 |
+
)
|
584 |
+
)
|
585 |
+
if EVEN_N:
|
586 |
+
if EVEN_HEADDIM:
|
587 |
+
v = tl.load(
|
588 |
+
v_ptrs
|
589 |
+
)
|
590 |
+
else:
|
591 |
+
v = tl.load(
|
592 |
+
v_ptrs,
|
593 |
+
mask=offs_d[None, None, :] < headdim,
|
594 |
+
other=0.0
|
595 |
+
)
|
596 |
+
else:
|
597 |
+
if EVEN_HEADDIM:
|
598 |
+
v = tl.load(
|
599 |
+
v_ptrs,
|
600 |
+
mask=(
|
601 |
+
start_n * BLOCK_N +
|
602 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
603 |
+
offs_m[None, :, None]
|
604 |
+
) < seqlen,
|
605 |
+
other=0.0
|
606 |
+
)
|
607 |
+
else:
|
608 |
+
v = tl.load(
|
609 |
+
v_ptrs,
|
610 |
+
mask=(
|
611 |
+
(
|
612 |
+
start_n * BLOCK_N +
|
613 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
614 |
+
offs_m[None, :, None]
|
615 |
+
) < seqlen
|
616 |
+
) & (offs_d[None, None, :] < headdim),
|
617 |
+
other=0.0
|
618 |
+
)
|
619 |
+
|
620 |
+
|
621 |
+
if EVEN_N:
|
622 |
+
if EVEN_HEADDIM:
|
623 |
+
rfa_v = tl.load(
|
624 |
+
rfa_v_ptrs
|
625 |
+
)
|
626 |
+
else:
|
627 |
+
rfa_v = tl.load(
|
628 |
+
rfa_v_ptrs,
|
629 |
+
mask=offs_d[None, :] < headdim,
|
630 |
+
other=0.0
|
631 |
+
)
|
632 |
+
else:
|
633 |
+
if EVEN_HEADDIM:
|
634 |
+
rfa_v = tl.load(
|
635 |
+
rfa_v_ptrs,
|
636 |
+
mask=offs_rfa_c[:, None] < nchunks,
|
637 |
+
other=0.0
|
638 |
+
)
|
639 |
+
else:
|
640 |
+
rfa_v = tl.load(
|
641 |
+
rfa_v_ptrs,
|
642 |
+
mask=(offs_rfa_c[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
643 |
+
other=0.0
|
644 |
+
)
|
645 |
+
|
646 |
+
if EVEN_N:
|
647 |
+
if EVEN_HEADDIM:
|
648 |
+
d_rfa_v = tl.load(
|
649 |
+
d_rfa_v_ptrs
|
650 |
+
)
|
651 |
+
else:
|
652 |
+
d_rfa_v = tl.load(
|
653 |
+
d_rfa_v_ptrs,
|
654 |
+
mask=offs_d[None, :] < headdim,
|
655 |
+
other=0.0
|
656 |
+
)
|
657 |
+
else:
|
658 |
+
if EVEN_HEADDIM:
|
659 |
+
d_rfa_v = tl.load(
|
660 |
+
d_rfa_v_ptrs,
|
661 |
+
mask=offs_rfa_c[:, None] < nchunks,
|
662 |
+
other=0.0
|
663 |
+
)
|
664 |
+
else:
|
665 |
+
d_rfa_v = tl.load(
|
666 |
+
d_rfa_v_ptrs,
|
667 |
+
mask=(offs_rfa_c[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
668 |
+
other=0.0
|
669 |
+
)
|
670 |
+
|
671 |
+
param_phi = tl.load(param_phi_ptrs).to(k.dtype)
|
672 |
+
phi_c_w = tl.zeros([CHUNKS_PER_BLOCK, CHUNK_SIZE], dtype=tl.float32)
|
673 |
+
phi_c_w += tl.sum(k * param_phi, axis=-1)
|
674 |
+
phi_c_w -= (0.5 * tl.sum(k * k, axis=-1))
|
675 |
+
phi_c_w *= log2e * softmax_scale
|
676 |
+
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
677 |
+
phi_c_w += tl.where(
|
678 |
+
(
|
679 |
+
start_n * BLOCK_N +
|
680 |
+
offs_c[:, None] * CHUNK_SIZE +
|
681 |
+
offs_m[None, :]
|
682 |
+
) < seqlen,
|
683 |
+
0,
|
684 |
+
float("-inf")
|
685 |
+
)
|
686 |
+
|
687 |
+
if MASK_TYPE == 1:
|
688 |
+
phi_c_w = tl.where(mask, float("-inf"), phi_c_w)
|
689 |
+
|
690 |
+
|
691 |
+
m_phi_c_w = tl.max(phi_c_w, axis=-1)
|
692 |
+
masked_out_rows_phi = (m_phi_c_w == float("-inf"))
|
693 |
+
m_phi_c_w_masked = tl.where(masked_out_rows_phi, 0, m_phi_c_w)
|
694 |
+
phi_c_w = tl.exp2(phi_c_w - m_phi_c_w_masked[:, None])
|
695 |
+
denom_phi = tl.sum(phi_c_w, axis=-1)
|
696 |
+
denom_phi = tl.where(denom_phi == 0.0, 1.0, denom_phi)
|
697 |
+
phi_tilde_c_w = phi_c_w / denom_phi[:, None]
|
698 |
+
# phi_c_w = tl.exp2(phi_c_w - tl.max(phi_c_w, axis=-1)[:, None])
|
699 |
+
# phi_tilde_c_w = phi_c_w / tl.sum(phi_c_w, axis=-1)[:, None]
|
700 |
+
phi_tilde_c_w = phi_tilde_c_w.to(k.dtype)
|
701 |
+
d_phi_tilde_c_w = tl.sum(d_rfa_v[:, None, :] * v, axis=-1)
|
702 |
+
d_out_rfa_v_t_rfa_v = tl.sum(d_rfa_v * rfa_v, axis=-1)[:, None]
|
703 |
+
d_phi_c_w = (d_phi_tilde_c_w.to(tl.float32) - d_out_rfa_v_t_rfa_v.to(tl.float32)) * phi_tilde_c_w
|
704 |
+
|
705 |
+
d_param_phi = tl.sum(tl.sum(d_phi_c_w[:, :, None] * k * softmax_scale, axis=0), axis=0)
|
706 |
+
d_v = phi_tilde_c_w[:, :, None] * d_rfa_v[:, None, :]
|
707 |
+
# [c, w, d] + [c, w] * [1, 1, d] - [c, w, d]
|
708 |
+
d_k = d_k + softmax_scale * d_phi_c_w[:, :, None] * (param_phi - k)
|
709 |
+
|
710 |
+
d_k_ptrs = (
|
711 |
+
D_K +
|
712 |
+
offs_b * stride_d_k_b +
|
713 |
+
offs_h * stride_d_k_h +
|
714 |
+
(
|
715 |
+
(
|
716 |
+
start_n * BLOCK_N +
|
717 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
718 |
+
offs_m[None, :, None]
|
719 |
+
) * stride_d_k_n +
|
720 |
+
offs_d[None, None, :]
|
721 |
+
)
|
722 |
+
)
|
723 |
+
d_v_ptrs = (
|
724 |
+
D_V +
|
725 |
+
offs_b * stride_d_v_b +
|
726 |
+
offs_h * stride_d_v_h +
|
727 |
+
(
|
728 |
+
(
|
729 |
+
start_n * BLOCK_N +
|
730 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
731 |
+
offs_m[None, :, None]
|
732 |
+
) * stride_d_v_n +
|
733 |
+
offs_d[None, None, :]
|
734 |
+
)
|
735 |
+
)
|
736 |
+
if EVEN_N:
|
737 |
+
if EVEN_HEADDIM:
|
738 |
+
tl.store(
|
739 |
+
d_k_ptrs, d_k
|
740 |
+
)
|
741 |
+
tl.store(
|
742 |
+
d_v_ptrs, d_v
|
743 |
+
)
|
744 |
+
else:
|
745 |
+
tl.store(
|
746 |
+
d_k_ptrs, d_k,
|
747 |
+
mask=offs_d[None, None, :] < headdim
|
748 |
+
)
|
749 |
+
tl.store(
|
750 |
+
d_v_ptrs, d_v,
|
751 |
+
mask=offs_d[None, None, :] < headdim
|
752 |
+
)
|
753 |
+
else:
|
754 |
+
if EVEN_HEADDIM:
|
755 |
+
tl.store(
|
756 |
+
d_k_ptrs, d_k,
|
757 |
+
mask=(
|
758 |
+
(
|
759 |
+
start_n * BLOCK_N +
|
760 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
761 |
+
offs_m[None, :, None]
|
762 |
+
) < seqlen
|
763 |
+
),
|
764 |
+
)
|
765 |
+
tl.store(
|
766 |
+
d_v_ptrs, d_v,
|
767 |
+
mask=(
|
768 |
+
(
|
769 |
+
start_n * BLOCK_N +
|
770 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
771 |
+
offs_m[None, :, None]
|
772 |
+
) < seqlen
|
773 |
+
),
|
774 |
+
)
|
775 |
+
else:
|
776 |
+
tl.store(
|
777 |
+
d_k_ptrs, d_k,
|
778 |
+
mask=(
|
779 |
+
(
|
780 |
+
start_n * BLOCK_N +
|
781 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
782 |
+
offs_m[None, :, None]
|
783 |
+
) < seqlen
|
784 |
+
) & (offs_d[None, None, :] < headdim),
|
785 |
+
)
|
786 |
+
tl.store(
|
787 |
+
d_v_ptrs, d_v,
|
788 |
+
mask=(
|
789 |
+
(
|
790 |
+
start_n * BLOCK_N +
|
791 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
792 |
+
offs_m[None, :, None]
|
793 |
+
) < seqlen
|
794 |
+
) & (offs_d[None, None, :] < headdim),
|
795 |
+
)
|
796 |
+
d_param_phi_partial_ptrs = (
|
797 |
+
D_PARAM_PHI_PARTIAL +
|
798 |
+
offs_b * stride_d_phi_b +
|
799 |
+
offs_h * stride_d_phi_h +
|
800 |
+
start_n * stride_d_phi_g +
|
801 |
+
offs_d
|
802 |
+
)
|
803 |
+
if EVEN_HEADDIM:
|
804 |
+
tl.store(
|
805 |
+
d_param_phi_partial_ptrs, d_param_phi
|
806 |
+
)
|
807 |
+
else:
|
808 |
+
tl.store(
|
809 |
+
d_param_phi_partial_ptrs, d_param_phi,
|
810 |
+
mask=offs_d < headdim
|
811 |
+
)
|
812 |
+
|
813 |
+
def triton_eva_prep_kv_fwd(k, v, param_mu, param_phi, mask, softmax_scale, chunksize):
|
814 |
k, v, param_mu, param_phi = [
|
815 |
x if x.stride(-1) == 1 else x.contiguous()
|
816 |
for x in [k, v, param_mu, param_phi]
|
|
|
831 |
softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim)
|
832 |
|
833 |
mask_type = 0
|
834 |
+
if mask is not None:
|
835 |
mask_type = 1
|
836 |
+
assert mask.dtype == torch.bool
|
837 |
+
assert mask.is_cuda
|
838 |
+
assert mask.dim() == 4
|
839 |
+
assert mask.shape == (batch, 1, seqlen, 1)
|
840 |
+
if mask.stride(-1) != 1:
|
841 |
+
mask = mask.contiguous()
|
842 |
mask_strides = (
|
843 |
+
(mask.stride(0), mask.stride(2))
|
844 |
if mask_type == 1 else
|
845 |
(0, 0)
|
846 |
)
|
|
|
860 |
v,
|
861 |
param_mu,
|
862 |
param_phi,
|
863 |
+
mask,
|
864 |
out_rfa_k,
|
865 |
out_rfa_v,
|
866 |
softmax_scale,
|
|
|
875 |
seqlen,
|
876 |
nchunks,
|
877 |
head_dim,
|
|
|
|
|
878 |
chunks_per_block,
|
879 |
chunksize,
|
880 |
mask_type,
|
|
|
884 |
num_stages=1,
|
885 |
)
|
886 |
return out_rfa_k, out_rfa_v
|
887 |
+
|
888 |
+
def triton_eva_prep_kv_bwd(
|
889 |
+
d_rfa_k, d_rfa_v,
|
890 |
+
k, v, param_mu, param_phi,
|
891 |
+
mask,
|
892 |
+
rfa_k, rfa_v,
|
893 |
+
d_k, d_v, d_param_mu, d_param_phi,
|
894 |
+
softmax_scale,
|
895 |
+
mask_type,
|
896 |
+
chunksize
|
897 |
+
):
|
898 |
+
d_rfa_k, d_rfa_v = [
|
899 |
+
x if x.stride(-1) == 1 else x.contiguous()
|
900 |
+
for x in [d_rfa_k, d_rfa_v]
|
901 |
+
]
|
902 |
+
|
903 |
+
# shape constraints
|
904 |
+
batch, nheads, seqlen, head_dim = k.shape
|
905 |
+
assert seqlen % chunksize == 0, "seqlen must be divisible by chunksize"
|
906 |
+
nchunks = seqlen // chunksize
|
907 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim)
|
908 |
+
|
909 |
+
mask_strides = (
|
910 |
+
(mask.stride(0), mask.stride(2))
|
911 |
+
if mask_type == 1 else
|
912 |
+
(0, 0)
|
913 |
+
)
|
914 |
+
|
915 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16)
|
916 |
+
BLOCK = 128
|
917 |
+
num_warps = 4 if head_dim <= 64 else 8
|
918 |
+
|
919 |
+
assert (BLOCK > chunksize) & (BLOCK % chunksize) == 0, "BLOCK must be divisible by chunksize"
|
920 |
+
chunks_per_block = BLOCK // chunksize
|
921 |
+
|
922 |
+
partial_groups = triton.cdiv(seqlen, BLOCK)
|
923 |
+
d_param_mu_partial = torch.zeros((batch, nheads, partial_groups, head_dim), dtype=torch.float32, device=d_rfa_k.device)
|
924 |
+
d_param_phi_partial = torch.zeros((batch, nheads, partial_groups, head_dim), dtype=torch.float32, device=d_rfa_k.device)
|
925 |
+
grid = lambda META: (partial_groups, batch * nheads)
|
926 |
+
_bwd_eva_prep_kv_kernel[grid](
|
927 |
+
rfa_k, # [b, h, c, d]
|
928 |
+
rfa_v, # [b, h, c, d]
|
929 |
+
k, # [b, h, n, d]
|
930 |
+
v, # [b, h, n, d]
|
931 |
+
param_mu, # [1, h, 1, 1, d]
|
932 |
+
param_phi, # [1, h, 1, 1, d]
|
933 |
+
mask, # [b, h, n, 1]
|
934 |
+
d_rfa_k, # [b, h, c, d]
|
935 |
+
d_rfa_v, # [b, h, c, d]
|
936 |
+
d_k, # [b, h, n, d]
|
937 |
+
d_v, # [b, h, n, d]
|
938 |
+
d_param_mu_partial, # [b, h, g, d]
|
939 |
+
d_param_phi_partial, # [b, h, g, d]
|
940 |
+
softmax_scale,
|
941 |
+
rfa_k.stride(0), rfa_k.stride(1), rfa_k.stride(2),
|
942 |
+
rfa_v.stride(0), rfa_v.stride(1), rfa_v.stride(2),
|
943 |
+
k.stride(0), k.stride(1), k.stride(2),
|
944 |
+
v.stride(0), v.stride(1), v.stride(2),
|
945 |
+
param_mu.stride(1),
|
946 |
+
param_phi.stride(1),
|
947 |
+
mask_strides[0], mask_strides[1],
|
948 |
+
d_rfa_k.stride(0), d_rfa_k.stride(1), d_rfa_k.stride(2),
|
949 |
+
d_rfa_v.stride(0), d_rfa_v.stride(1), d_rfa_v.stride(2),
|
950 |
+
d_k.stride(0), d_k.stride(1), d_k.stride(2),
|
951 |
+
d_v.stride(0), d_v.stride(1), d_v.stride(2),
|
952 |
+
d_param_mu_partial.stride(0), d_param_mu_partial.stride(1), d_param_mu_partial.stride(2),
|
953 |
+
d_param_phi_partial.stride(0), d_param_phi_partial.stride(1), d_param_phi_partial.stride(2),
|
954 |
+
nheads,
|
955 |
+
seqlen,
|
956 |
+
nchunks,
|
957 |
+
head_dim,
|
958 |
+
chunks_per_block,
|
959 |
+
chunksize,
|
960 |
+
mask_type,
|
961 |
+
BLOCK_HEADDIM,
|
962 |
+
BLOCK_N=BLOCK,
|
963 |
+
num_warps=num_warps,
|
964 |
+
num_stages=1,
|
965 |
+
)
|
966 |
+
d_param_mu.copy_(d_param_mu_partial.sum(dim=(0, -2), keepdim=True).unsqueeze(-2).to(d_param_mu.dtype))
|
967 |
+
d_param_phi.copy_(d_param_phi_partial.sum(dim=(0, -2), keepdim=True).unsqueeze(-2).to(d_param_phi.dtype))
|
968 |
+
|
969 |
+
|
970 |
+
|
971 |
+
class EvaPrepKVFunc(torch.autograd.Function):
|
972 |
+
@staticmethod
|
973 |
+
def forward(ctx, k, v, param_mu, param_phi, mask, softmax_scale=None, chunksize=None):
|
974 |
+
if mask is not None:
|
975 |
+
mask_type = 1
|
976 |
+
else:
|
977 |
+
mask_type = 0
|
978 |
+
rfa_k, rfa_v = triton_eva_prep_kv_fwd(
|
979 |
+
k, v, param_mu, param_phi, mask, softmax_scale, chunksize
|
980 |
+
)
|
981 |
+
ctx.save_for_backward(k, v, param_mu, param_phi, mask, rfa_k, rfa_v)
|
982 |
+
ctx.softmax_scale = softmax_scale
|
983 |
+
ctx.chunksize = chunksize
|
984 |
+
ctx.mask_type = mask_type
|
985 |
+
return rfa_k, rfa_v
|
986 |
+
|
987 |
+
@staticmethod
|
988 |
+
def backward(ctx, d_rfa_k, d_rfa_v):
|
989 |
+
k, v, param_mu, param_phi, mask, rfa_k, rfa_v = ctx.saved_tensors
|
990 |
+
d_k = torch.empty_like(k)
|
991 |
+
d_v = torch.empty_like(v)
|
992 |
+
d_param_mu = torch.empty_like(param_mu)
|
993 |
+
d_param_phi = torch.empty_like(param_phi)
|
994 |
+
triton_eva_prep_kv_bwd(
|
995 |
+
d_rfa_k, d_rfa_v,
|
996 |
+
k, v, param_mu, param_phi,
|
997 |
+
mask,
|
998 |
+
rfa_k, rfa_v,
|
999 |
+
d_k, d_v, d_param_mu, d_param_phi,
|
1000 |
+
ctx.softmax_scale,
|
1001 |
+
ctx.mask_type,
|
1002 |
+
ctx.chunksize
|
1003 |
+
)
|
1004 |
+
return d_k, d_v, d_param_mu, d_param_phi, None, None, None
|
1005 |
+
|
1006 |
+
def eva_prep_kv_func_triton(
|
1007 |
+
k, v,
|
1008 |
+
param_mu, param_phi,
|
1009 |
+
mask,
|
1010 |
+
softmax_scale=None, chunksize=None
|
1011 |
+
):
|
1012 |
+
return EvaPrepKVFunc.apply(
|
1013 |
+
k, v,
|
1014 |
+
param_mu, param_phi,
|
1015 |
+
mask,
|
1016 |
+
softmax_scale, chunksize
|
1017 |
+
)
|
eva_pt_ref.py
CHANGED
@@ -263,7 +263,6 @@ class EvaAttention(nn.Module):
|
|
263 |
v,
|
264 |
self.layer_idx,
|
265 |
self.window_size,
|
266 |
-
self.singleton_update
|
267 |
)
|
268 |
else:
|
269 |
prev_w_q = self.window_partition(q) # [b, h, w, i, d]
|
@@ -289,10 +288,9 @@ class EvaAttention(nn.Module):
|
|
289 |
layer_idx=self.layer_idx,
|
290 |
window_size=self.window_size,
|
291 |
chunk_size=self.chunk_size,
|
292 |
-
singleton_update=self.singleton_update
|
293 |
)
|
294 |
else:
|
295 |
-
prev_s_mask =
|
296 |
cur_s_mask = None
|
297 |
prev_chunk_mask = self.window_partition(chunk_causal_mask)
|
298 |
cur_chunk_mask = None
|
|
|
263 |
v,
|
264 |
self.layer_idx,
|
265 |
self.window_size,
|
|
|
266 |
)
|
267 |
else:
|
268 |
prev_w_q = self.window_partition(q) # [b, h, w, i, d]
|
|
|
288 |
layer_idx=self.layer_idx,
|
289 |
window_size=self.window_size,
|
290 |
chunk_size=self.chunk_size,
|
|
|
291 |
)
|
292 |
else:
|
293 |
+
prev_s_mask = self.window_partition(prev_causal_mask) # [1, 1, w, i, j]
|
294 |
cur_s_mask = None
|
295 |
prev_chunk_mask = self.window_partition(chunk_causal_mask)
|
296 |
cur_chunk_mask = None
|
modeling_evabyte.py
CHANGED
@@ -148,7 +148,7 @@ class EvaByteRMSNorm(nn.Module):
|
|
148 |
def __init__(self, config):
|
149 |
super().__init__()
|
150 |
self.config = config
|
151 |
-
self.fp32_ln =
|
152 |
self.variance_epsilon = config.rms_norm_eps
|
153 |
self.add_unit_offset = config.norm_add_unit_offset
|
154 |
if self.add_unit_offset:
|
@@ -157,18 +157,14 @@ class EvaByteRMSNorm(nn.Module):
|
|
157 |
self.weight = nn.Parameter(torch.ones(config.hidden_size))
|
158 |
|
159 |
def forward(self, hidden_states):
|
160 |
-
if
|
161 |
-
fp32_ln = self.config.fp32_ln
|
162 |
-
else:
|
163 |
-
fp32_ln = self.fp32_ln
|
164 |
-
hidden_states = hidden_states.to(torch.float32 if fp32_ln else torch.bfloat16)
|
165 |
|
166 |
-
variance =
|
167 |
-
|
168 |
if self.add_unit_offset:
|
169 |
-
return (1 + self.weight) * hidden_states
|
170 |
else:
|
171 |
-
return self.weight * hidden_states
|
172 |
|
173 |
class EvaByteRotaryEmbedding(torch.nn.Module):
|
174 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
@@ -313,7 +309,7 @@ class EvaByteDecoderLayer(nn.Module):
|
|
313 |
cos=cos,
|
314 |
sin=sin,
|
315 |
multibyte_decoding=multibyte_decoding)
|
316 |
-
hidden_states = residual + hidden_states
|
317 |
|
318 |
# Fully Connected
|
319 |
residual = hidden_states
|
@@ -321,7 +317,7 @@ class EvaByteDecoderLayer(nn.Module):
|
|
321 |
residual = residual.float()
|
322 |
hidden_states = self.post_attention_layernorm(hidden_states)
|
323 |
hidden_states = self.mlp(hidden_states)
|
324 |
-
hidden_states = residual + hidden_states
|
325 |
|
326 |
outputs = (hidden_states, )
|
327 |
|
@@ -653,7 +649,7 @@ class EvaByteModel(EvaBytePreTrainedModel):
|
|
653 |
)
|
654 |
else:
|
655 |
assert self.training
|
656 |
-
assert seq_len % self.config.window_size == 0
|
657 |
# for training, we need to pass in the attention mask
|
658 |
# usually calculated by _prepare_training_attn_mask()
|
659 |
causal_mask = attention_mask
|
@@ -683,31 +679,6 @@ class EvaByteModel(EvaBytePreTrainedModel):
|
|
683 |
cos = cos.unsqueeze(1)
|
684 |
sin = sin.unsqueeze(1)
|
685 |
|
686 |
-
if USE_TRITON_IMPL and (not multibyte_decoding):
|
687 |
-
# the masks generated above for triton kernels are boolean. Convert them to floats
|
688 |
-
if (
|
689 |
-
(not use_cache) or
|
690 |
-
(use_cache and past_seen_tokens == 0)
|
691 |
-
):
|
692 |
-
window_mask, intra_chunk_mask = causal_mask
|
693 |
-
|
694 |
-
if window_mask is not None:
|
695 |
-
assert window_mask.dtype == torch.bool
|
696 |
-
window_mask_float = window_mask.to(torch.float)
|
697 |
-
window_mask_float = window_mask_float.masked_fill(window_mask.to(torch.bool), MASK_MIN_VALUE)
|
698 |
-
window_mask_float = window_mask_float.reshape(batch_size, 1, -1, self.config.window_size)
|
699 |
-
window_mask = window_mask_float.to(hidden_states.dtype)
|
700 |
-
|
701 |
-
if intra_chunk_mask is not None:
|
702 |
-
assert intra_chunk_mask.dtype == torch.bool
|
703 |
-
intra_chunk_mask_float = intra_chunk_mask.to(torch.float)
|
704 |
-
intra_chunk_mask_float = intra_chunk_mask_float.masked_fill(intra_chunk_mask.to(torch.bool), MASK_MIN_VALUE)
|
705 |
-
intra_chunk_mask = intra_chunk_mask_float.to(hidden_states.dtype)
|
706 |
-
causal_mask = (window_mask, intra_chunk_mask)
|
707 |
-
|
708 |
-
if self.config.fp32_skip_add:
|
709 |
-
hidden_states = hidden_states.float()
|
710 |
-
|
711 |
# decoder layers
|
712 |
all_hidden_states = () if output_hidden_states else None
|
713 |
all_self_attns = () if output_attentions else None
|
@@ -718,20 +689,17 @@ class EvaByteModel(EvaBytePreTrainedModel):
|
|
718 |
all_hidden_states += (hidden_states, )
|
719 |
|
720 |
if self.gradient_checkpointing and self.training:
|
721 |
-
|
722 |
-
def create_custom_forward(module):
|
723 |
-
def custom_forward(*inputs):
|
724 |
-
# None for past_key_value
|
725 |
-
return module(*inputs, output_attentions, use_cache=None)
|
726 |
-
|
727 |
-
return custom_forward
|
728 |
-
|
729 |
layer_outputs = torch.utils.checkpoint.checkpoint(
|
730 |
-
|
731 |
hidden_states,
|
732 |
causal_mask,
|
733 |
position_ids,
|
734 |
-
|
|
|
|
|
|
|
|
|
|
|
735 |
)
|
736 |
else:
|
737 |
layer_outputs = decoder_layer(
|
@@ -806,154 +774,6 @@ class EvaByteForCausalLM(EvaBytePreTrainedModel, MultiByteDecodingMixin):
|
|
806 |
def get_decoder(self):
|
807 |
return self.model
|
808 |
|
809 |
-
def _prepare_training_attn_mask(
|
810 |
-
self,
|
811 |
-
target_token_type_ids,
|
812 |
-
use_doc_boundary_attention,
|
813 |
-
EOS_TOKEN_TYPE_ID=None,
|
814 |
-
PAD_TOKEN_TYPE_ID=None,
|
815 |
-
):
|
816 |
-
'''
|
817 |
-
This function prepares the attention mask for training byte models.
|
818 |
-
target_token_type_ids:
|
819 |
-
Tensor of shape (batch_size, seq_len), marking the token type ids
|
820 |
-
for the target sequence. In particular, we should have
|
821 |
-
- target_token_type_ids[i, j] = EOS_TOKEN_TYPE_ID
|
822 |
-
if the j-th token in the i-th sequence is the end of an article.
|
823 |
-
- target_token_type_ids[i, j] = PAD_TOKEN_TYPE_ID
|
824 |
-
if the j-th token in the i-th sequence is the padding token.
|
825 |
-
use_doc_boundary_attention: bool,
|
826 |
-
whether to enable doc boundary attention.
|
827 |
-
EOS_TOKEN_TYPE_ID: int,
|
828 |
-
the token type id for the end of an article.
|
829 |
-
PAD_TOKEN_TYPE_ID: int,
|
830 |
-
the token type id for the padding token.
|
831 |
-
'''
|
832 |
-
assert self.training
|
833 |
-
batch_size, num_tokens = target_token_type_ids.shape
|
834 |
-
|
835 |
-
chunk_causal_mask, window_causal_mask = prepare_eva_attention_mask(
|
836 |
-
num_tokens,
|
837 |
-
target_token_type_ids.device,
|
838 |
-
chunk_size=self.config.chunk_size,
|
839 |
-
window_size=self.config.window_size,
|
840 |
-
use_cache=False,
|
841 |
-
cache=None
|
842 |
-
)
|
843 |
-
if use_doc_boundary_attention:
|
844 |
-
#### step 1: mark each document with a unique id
|
845 |
-
end_token_ids = {EOS_TOKEN_TYPE_ID, PAD_TOKEN_TYPE_ID}
|
846 |
-
token_types = torch.zeros(batch_size, num_tokens)
|
847 |
-
for sequence_idx, sequence in enumerate(target_token_type_ids):
|
848 |
-
num_articles = 0
|
849 |
-
start_index = 0
|
850 |
-
# for each sample in the batch, the collapsed attention mask looks like:
|
851 |
-
# [1, 1, .... 1, 0, 2, 2, ... 2, 0, ... n, n ..... n], assuming there are n articles in the sequence.
|
852 |
-
# Each of the n articles are separated by 0.
|
853 |
-
for token_idx, token_type_id in enumerate(sequence):
|
854 |
-
if start_index is not None and token_type_id.item() in end_token_ids:
|
855 |
-
num_articles += 1
|
856 |
-
end_index = token_idx if token_type_id == PAD_TOKEN_TYPE_ID else token_idx + 1
|
857 |
-
token_types[sequence_idx][start_index:end_index] = num_articles
|
858 |
-
start_index = None
|
859 |
-
elif start_index is None and token_type_id not in end_token_ids:
|
860 |
-
start_index = token_idx + 1
|
861 |
-
|
862 |
-
assert num_tokens % self.config.chunk_size == 0, "Number of tokens must be divisible by chunk size"
|
863 |
-
assert num_tokens % self.config.window_size == 0, "Number of tokens must be divisible by window size"
|
864 |
-
num_chunks = num_tokens // self.config.chunk_size
|
865 |
-
num_windows = num_tokens // self.config.window_size
|
866 |
-
|
867 |
-
article_separator = 0
|
868 |
-
|
869 |
-
#### step 2: generate attention masks for each window
|
870 |
-
#### NOTE: we perform exact attention within each window,
|
871 |
-
#### so we only need to mask out different documents
|
872 |
-
#### for each window.
|
873 |
-
token_types_windows = token_types.reshape(batch_size, num_windows, self.config.window_size, 1)
|
874 |
-
token_types_windows_t = token_types_windows.transpose(-1, -2)
|
875 |
-
# replace all elements in TOKEN_SEPS with -1
|
876 |
-
token_types_windows = torch.where(token_types_windows == article_separator, -1, token_types_windows)
|
877 |
-
window_3d_mask = (token_types_windows == token_types_windows_t)
|
878 |
-
window_3d_mask = ~window_3d_mask
|
879 |
-
|
880 |
-
#### step 3: generate chunk-level 3D masks
|
881 |
-
#### NOTE: this is a bit tricky, as we aim to mask out different
|
882 |
-
#### documents to avoid cross-doc attention across chunks.
|
883 |
-
#### Example: suppose we have a sequence of length 12 with 3 documents:
|
884 |
-
#### [1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3].
|
885 |
-
#### The chunk-size and window-size are both 4.
|
886 |
-
#### The chunk-level mask of shape (batch_size, seq_len, num_chunks) is:
|
887 |
-
#### [
|
888 |
-
#### [0, 0, 0],
|
889 |
-
#### [0, 0, 0],
|
890 |
-
#### [0, 0, 0],
|
891 |
-
#### [0, 0, 0],
|
892 |
-
####
|
893 |
-
#### [1, 0, 0],
|
894 |
-
#### [0, 0, 0],
|
895 |
-
#### [0, 0, 0],
|
896 |
-
#### [0, 0, 0],
|
897 |
-
####
|
898 |
-
#### [0, 1, 0],
|
899 |
-
#### [0, 1, 0],
|
900 |
-
#### [0, 1, 0],
|
901 |
-
#### [0, 1, 0],
|
902 |
-
#### ]
|
903 |
-
#### Explanation:
|
904 |
-
#### - Tokens will not attend to their own and future chunks.
|
905 |
-
#### (as tokens within a chunk are captured by the window-level exact attention)
|
906 |
-
#### - Tokens will attend to a chunk only if there are tokens
|
907 |
-
#### from the same document in that chunk.
|
908 |
-
#### The mask within each chunk of shape (batch_size, num_chunks, chunk_size) is:
|
909 |
-
#### [
|
910 |
-
#### [1, 1, 1, 1],
|
911 |
-
#### [0, 0, 0, 1],
|
912 |
-
#### [1, 1, 1, 1],
|
913 |
-
#### ]
|
914 |
-
#### Explanation:
|
915 |
-
#### - If all tokens in a chunk are from the same document,
|
916 |
-
#### no tokens will be masked out.
|
917 |
-
#### - If there are tokens from different documents in a chunk,
|
918 |
-
#### only tokens from the rightmost document will be kept.
|
919 |
-
#### (b/c the future chunks might contain tokens from the rightmost document,
|
920 |
-
#### but all the remaining docs will never get attended by other docs)
|
921 |
-
token_types_chunks = token_types.reshape(batch_size, num_chunks, self.config.chunk_size)
|
922 |
-
inter_chunk_mask = torch.zeros((batch_size, num_tokens, num_chunks), dtype=torch.bool)
|
923 |
-
intra_chunk_mask = torch.ones_like(token_types_chunks, dtype=torch.bool)
|
924 |
-
|
925 |
-
for chunk_idx in range(num_chunks):
|
926 |
-
for batch_idx in range(batch_size):
|
927 |
-
# Identify tokens in the current chunk belonging to each sequence
|
928 |
-
chunk = token_types_chunks[batch_idx, chunk_idx]
|
929 |
-
unique_elements = torch.unique(chunk, sorted=True).tolist()
|
930 |
-
|
931 |
-
# Create a mask for whether each token can attend to the current chunk
|
932 |
-
for token_type in unique_elements:
|
933 |
-
if token_type == article_separator:
|
934 |
-
continue
|
935 |
-
token_mask = (token_types[batch_idx] == token_type)
|
936 |
-
inter_chunk_mask[batch_idx, :, chunk_idx] |= token_mask
|
937 |
-
|
938 |
-
# Create a mask within each chunk
|
939 |
-
unique_elements = [x for x in unique_elements if x != article_separator]
|
940 |
-
if len(unique_elements) > 1 and chunk[-1] != article_separator:
|
941 |
-
intra_chunk_mask[batch_idx, chunk_idx] = (chunk == unique_elements[-1])
|
942 |
-
|
943 |
-
inter_chunk_mask = ~inter_chunk_mask
|
944 |
-
intra_chunk_mask = ~intra_chunk_mask
|
945 |
-
|
946 |
-
window_mask = torch.logical_or(window_causal_mask, window_3d_mask.unsqueeze(1))
|
947 |
-
inter_chunk_mask = torch.logical_or(chunk_causal_mask, inter_chunk_mask.unsqueeze(1))
|
948 |
-
intra_chunk_mask = intra_chunk_mask.unsqueeze(1).unsqueeze(-1)
|
949 |
-
|
950 |
-
joint_mask = torch.cat([window_mask, inter_chunk_mask.reshape(*window_mask.shape)], dim=-1)
|
951 |
-
attention_mask = (joint_mask, intra_chunk_mask)
|
952 |
-
else:
|
953 |
-
joint_mask = torch.cat([window_causal_mask, chunk_causal_mask.reshape(*window_causal_mask.shape)], dim=-1)
|
954 |
-
attention_mask = (joint_mask, None)
|
955 |
-
return attention_mask
|
956 |
-
|
957 |
def forward(
|
958 |
self,
|
959 |
input_ids: torch.LongTensor = None,
|
|
|
148 |
def __init__(self, config):
|
149 |
super().__init__()
|
150 |
self.config = config
|
151 |
+
self.fp32_ln = True
|
152 |
self.variance_epsilon = config.rms_norm_eps
|
153 |
self.add_unit_offset = config.norm_add_unit_offset
|
154 |
if self.add_unit_offset:
|
|
|
157 |
self.weight = nn.Parameter(torch.ones(config.hidden_size))
|
158 |
|
159 |
def forward(self, hidden_states):
|
160 |
+
_hidden_states = hidden_states.to(torch.float32 if self.fp32_ln else torch.bfloat16)
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
variance = _hidden_states.pow(2).mean(-1, keepdim=True)
|
163 |
+
_hidden_states = _hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
164 |
if self.add_unit_offset:
|
165 |
+
return ((1 + self.weight) * _hidden_states).type_as(hidden_states)
|
166 |
else:
|
167 |
+
return (self.weight * _hidden_states).type_as(hidden_states)
|
168 |
|
169 |
class EvaByteRotaryEmbedding(torch.nn.Module):
|
170 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
|
|
309 |
cos=cos,
|
310 |
sin=sin,
|
311 |
multibyte_decoding=multibyte_decoding)
|
312 |
+
hidden_states = (residual + hidden_states).to(hidden_states.dtype)
|
313 |
|
314 |
# Fully Connected
|
315 |
residual = hidden_states
|
|
|
317 |
residual = residual.float()
|
318 |
hidden_states = self.post_attention_layernorm(hidden_states)
|
319 |
hidden_states = self.mlp(hidden_states)
|
320 |
+
hidden_states = (residual + hidden_states).to(hidden_states.dtype)
|
321 |
|
322 |
outputs = (hidden_states, )
|
323 |
|
|
|
649 |
)
|
650 |
else:
|
651 |
assert self.training
|
652 |
+
assert seq_len % self.config.window_size == 0, "Training is only tested for sequences that are a multiple of window_size"
|
653 |
# for training, we need to pass in the attention mask
|
654 |
# usually calculated by _prepare_training_attn_mask()
|
655 |
causal_mask = attention_mask
|
|
|
679 |
cos = cos.unsqueeze(1)
|
680 |
sin = sin.unsqueeze(1)
|
681 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
682 |
# decoder layers
|
683 |
all_hidden_states = () if output_hidden_states else None
|
684 |
all_self_attns = () if output_attentions else None
|
|
|
689 |
all_hidden_states += (hidden_states, )
|
690 |
|
691 |
if self.gradient_checkpointing and self.training:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
692 |
layer_outputs = torch.utils.checkpoint.checkpoint(
|
693 |
+
decoder_layer.__call__,
|
694 |
hidden_states,
|
695 |
causal_mask,
|
696 |
position_ids,
|
697 |
+
past_key_values,
|
698 |
+
output_attentions,
|
699 |
+
use_cache,
|
700 |
+
cos,
|
701 |
+
sin,
|
702 |
+
multibyte_decoding,
|
703 |
)
|
704 |
else:
|
705 |
layer_outputs = decoder_layer(
|
|
|
774 |
def get_decoder(self):
|
775 |
return self.model
|
776 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
777 |
def forward(
|
778 |
self,
|
779 |
input_ids: torch.LongTensor = None,
|