megatron_1.1_MoE_2x7B
megatron_1.1_MoE_2x7B is a Mixure of Experts (MoE) (mistral)
π» Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Eurdem/megatron_1.1_MoE_2x7B"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Tell me about AI"}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 69.94 |
AI2 Reasoning Challenge (25-Shot) | 65.53 |
HellaSwag (10-Shot) | 84.52 |
MMLU (5-Shot) | 65.02 |
TruthfulQA (0-shot) | 51.58 |
Winogrande (5-shot) | 81.53 |
GSM8k (5-shot) | 71.49 |
- Downloads last month
- 987
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Eurdem/megatron_1.1_MoE_2x7B
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard65.530
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard84.520
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard65.020
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard51.580
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard81.530
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard71.490