|
--- |
|
tags: |
|
- text-generation-inference |
|
- vicuna |
|
base_model: |
|
- lmsys/vicuna-7b-v1.5 |
|
--- |
|
|
|
|
|
# Vicuna 7B v1.5 with Key-Value-Cache enabled in ONNX AWQ (4-bit) format |
|
- Model creator: [LMSYS](https://huggingface.co/lmsys) |
|
- Original model: [LMSYS Vicuna 7B v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) |
|
|
|
<!-- description start --> |
|
## Description |
|
|
|
This repo contains the ONNX files from the ONNX conversion of Vicuna 7B v1.5 done by Esperanto Technologies. |
|
The model is in the 4-bit format quantized with AWQ and has the KVC enabled. |
|
|
|
### About AWQ |
|
|
|
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. |
|
More here: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) |
|
|
|
<!-- description end --> |
|
|
|
## How to download ONNX model and weight files |
|
|
|
The easiest way to obtain the model is to clone this whole repo. |
|
Alternatively you can download the files is using the `huggingface-hub` Python library. |
|
|
|
```shell |
|
pip3 install huggingface-hub>=0.17.1 |
|
``` |
|
|
|
Then you can download any individual model file to the current directory, at high speed, with a command like this: |
|
|
|
```shell |
|
huggingface-cli download Esperanto/vicuna-7b-v1.5-kvc-AWQ-int4-onnx --local-dir vicuna-7b-v1.5-kvc-AWQ-int4-onnx --local-dir-use-symlinks False |
|
``` |
|
|
|
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). |
|
|
|
## How to run from Python code using ONNXRuntime |
|
|
|
This model can easily be ran in a CPU using [ONNXRuntime](https://onnxruntime.ai/). |
|
|
|
#### First install the packages |
|
|
|
```bash |
|
pip3 install onnx==1.16.1 |
|
pip3 install onnxruntime==1.17.1 |
|
``` |
|
|
|
#### Example code: generate text with this model |
|
|
|
We define the loop with greedy decoding: |
|
```python |
|
import numpy as np |
|
import onnxruntime |
|
import onnx |
|
from transformers import AutoTokenizer |
|
|
|
def generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context): |
|
model = onnx.load(model_path) |
|
|
|
#we create the inputs for the first iteration |
|
input_tensor = tokenizer(prompt, return_tensors="pt") |
|
prompt_size = len(input_tensor['input_ids'][0]) |
|
actual_input = input_tensor['input_ids'] |
|
if prompt_size < window: |
|
actual_input = np.concatenate((tokenizer.bos_token_id*np.ones([1, window - prompt_size], dtype = 'int64'), |
|
actual_input), axis=1) |
|
if prompt_size + max_gen_tokens > total_sequence: |
|
print("ERROR: Longer total sequence is needed!") |
|
return |
|
first_attention = np.concatenate((np.zeros([1, total_sequence - window], dtype = 'int64'), |
|
np.ones((1, window), dtype = 'int64')), axis=1) |
|
max_gen_tokens += prompt_size #we need to generate on top of parsing the prompt |
|
inputs_names =[node.name for node in model.graph.input] |
|
output_names =[node.name for node in model.graph.output] |
|
n_heads = 32 #gqa-heads of the kvc |
|
inputs_dict = {} |
|
inputs_dict['input_ids'] = actual_input[:, :window].reshape(1, window).numpy() |
|
inputs_dict['attention_mask'] = first_attention |
|
index_pos = sum(first_attention[0]) |
|
inputs_dict['position_ids'] = np.concatenate((np.zeros([1, total_sequence - index_pos], dtype = 'int64'), np.arange(index_pos, dtype = 'int64').reshape(1, index_pos)), axis=1) |
|
inputs_dict['tree_attention'] = np.triu(-65504*np.ones(total_sequence), k= 1).astype('float16').reshape(1, 1, total_sequence, total_sequence) |
|
for name in inputs_names: |
|
if name == 'input_ids' or name == 'attention_mask' or name == 'position_ids' or name == 'tree_attention': continue |
|
inputs_dict[name] = np.zeros([1, n_heads, context-window, 128], dtype="float16") |
|
index = 0 |
|
new_token = np.array([10]) |
|
next_index = window |
|
old_j = 0 |
|
total_input = actual_input.numpy() |
|
|
|
rt_session = onnxruntime.InferenceSession(model_path) |
|
## We run the inferences |
|
while next_index < max_gen_tokens: |
|
if new_token.any() == tokenizer.eos_token_id: |
|
break |
|
#inference |
|
output = rt_session.run(output_names, inputs_dict) |
|
outs_dictionary = {name: content for (name, content) in zip (output_names, output)} |
|
#we prepare the inputs for the next inference |
|
for name in inputs_names: |
|
if name == 'input_ids': |
|
old_j = next_index |
|
if next_index < prompt_size: |
|
if prompt_size - next_index >= window: next_index += window |
|
else: next_index = prompt_size |
|
j = next_index - window |
|
else: |
|
next_index +=1 |
|
j = next_index - window |
|
new_token = outs_dictionary['logits'].argmax(-1).reshape(1, window) |
|
total_input = np.concatenate((total_input, new_token[: , -1:]), axis = 1) |
|
inputs_dict['input_ids']= total_input[:, j:next_index].reshape(1, window) |
|
elif name == 'attention_mask': |
|
inputs_dict['attention_mask'] = np.concatenate((np.zeros((1, total_sequence-next_index), dtype = 'int64'), np.ones((1, next_index), dtype = 'int64')), axis=1) |
|
elif name == 'position_ids': |
|
inputs_dict['position_ids'] = np.concatenate((np.zeros([1, total_sequence - next_index], dtype = 'int64'), np.arange(next_index, dtype = 'int64').reshape(1, next_index)), axis=1) |
|
elif name == 'tree_attention': continue |
|
else: |
|
old_name = name.replace("past_key_values", "present") |
|
inputs_dict[name] = outs_dictionary[old_name][:, :, next_index-old_j:context-window+(next_index - old_j), :] |
|
|
|
answer = tokenizer.decode(total_input[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
return answer |
|
``` |
|
We now run the inferences: |
|
|
|
```python |
|
tokenizer = AutoTokenizer.from_pretrained("vicuna-7b-v1.5-kvc-AWQ-int4-onnx") |
|
model_path = "vicuna-7b-v1.5-kvc-AWQ-int4-onnx/model.onnx" |
|
|
|
max_gen_tokens = 20 #number of tokens we want tog eneral |
|
total_sequence = 128 #total sequence_length |
|
context = 1024 #the context to extend the kvc |
|
window = 16 #number of tokens we want to parse at the time |
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
|
generated = generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context) |
|
print(generated) |
|
``` |