See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 24ad605fd0de4b3f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/24ad605fd0de4b3f_train_data.json
type:
field_instruction: problem
field_output: generated_solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: ErrorAI/505984d1-1ea8-4f84-9931-996d384fb062
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1485
micro_batch_size: 4
mlflow_experiment_name: /tmp/24ad605fd0de4b3f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f179a7be-855a-427c-9f97-e9b9ba8fdb44
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f179a7be-855a-427c-9f97-e9b9ba8fdb44
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
505984d1-1ea8-4f84-9931-996d384fb062
This model is a fine-tuned version of OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3862
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 1325
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4963 | 0.9998 | 1324 | 0.3859 |
1.1897 | 1.0006 | 1325 | 0.3862 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ErrorAI/505984d1-1ea8-4f84-9931-996d384fb062
Base model
OpenBuddy/openbuddy-llama2-13b-v8.1-fp16