|
--- |
|
base_model: unsloth/gemma-3n-e4b-unsloth-bnb-4bit |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- gemma3n |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
This finetuned model is specialized in STEM like LCB, CodeForce, AIME24, AIME25, AMC23, MATH500. |
|
|
|
Note: |
|
- Currently only text is supported. |
|
- Ollama: ollama run hf.co/unsloth/gemma-3n-E4B-it-GGUF:Q4_K_XL - auto-sets correct chat template and settings |
|
- Set temperature = 1.0, top_k = 64, top_p = 0.95, min_p = 0.0 |
|
- Gemma 3n max tokens (context length): 32K. Gemma 3n chat template: |
|
|
|
|
|
Use unsloth inference |
|
``` |
|
!pip install --upgrade transformers |
|
|
|
import torch |
|
from transformers import pipeline |
|
model_id = "EpistemeAI/Hercules-Coder-E4B-it" |
|
pipe = pipeline( |
|
"text-generation", |
|
model=model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
print(pipe("Write me a Python function to calculate the nth fibonacci number.")) |
|
``` |
|
|
|
Benchmark results (5 shot): |
|
| Tasks |Version|Filter|n-shot| Metric | |Value | |
|
|-------------|------:|------|-----:|--------|---|-----:| |
|
|arc_challenge| 1|none | 5|acc |β |0.5759| |
|
|hellaswag | 1|none | 5|acc |β |0.7651| |
|
|winogrande | 1|none | 5|acc |β |0.7526| |
|
|
|
GPQA Diamond result |
|
| Tasks |Version| Filter |n-shot| Metric | |Value | |
|
|---------------------|------:|-----------|-----:|--------|---|-----:| |
|
|gpqa_diamond_zeroshot| 1|none | 0|acc |β |0.2516| |
|
| | |none | 0|acc_norm|β |0.2516| |
|
|
|
# Uploaded finetuned model |
|
|
|
- **Developed by:** EpistemeAI |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** unsloth/gemma-3n-e4b-unsloth-bnb-4bit |
|
|
|
This gemma3n model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
# Citations |
|
``` |
|
@misc{liu2025rstarcoderscalingcompetitivecode, |
|
title={rStar-Coder: Scaling Competitive Code Reasoning with a Large-Scale Verified Dataset}, |
|
author={Yifei Liu and Li Lyna Zhang and Yi Zhu and Bingcheng Dong and Xudong Zhou and Ning Shang and Fan Yang and Mao Yang}, |
|
year={2025}, |
|
eprint={2505.21297}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2505.21297}, |
|
} |
|
|
|
``` |