|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: Qwen/Qwen2-1.5B |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: fine_tuned_xsum_callback10 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fine_tuned_xsum_callback10 |
|
|
|
This model is a fine-tuned version of [Qwen/Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1252 |
|
- Accuracy: 0.9675 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 0.8057 | 0.0289 | 100 | 0.6011 | 0.7324 | |
|
| 0.6239 | 0.0578 | 200 | 0.5307 | 0.8254 | |
|
| 0.4184 | 0.0867 | 300 | 0.3708 | 0.8417 | |
|
| 0.4352 | 0.1156 | 400 | 0.2976 | 0.8862 | |
|
| 0.3868 | 0.1445 | 500 | 0.2695 | 0.8950 | |
|
| 0.3264 | 0.1734 | 600 | 0.7274 | 0.8739 | |
|
| 0.4039 | 0.2023 | 700 | 0.3018 | 0.9314 | |
|
| 0.3415 | 0.2311 | 800 | 0.2797 | 0.9171 | |
|
| 0.3379 | 0.2600 | 900 | 0.1677 | 0.9360 | |
|
| 0.2547 | 0.2889 | 1000 | 0.1600 | 0.9506 | |
|
| 0.3377 | 0.3178 | 1100 | 0.5096 | 0.9025 | |
|
| 0.2786 | 0.3467 | 1200 | 0.1569 | 0.9496 | |
|
| 0.229 | 0.3756 | 1300 | 0.3807 | 0.9395 | |
|
| 0.1867 | 0.4045 | 1400 | 0.2366 | 0.9564 | |
|
| 0.1862 | 0.4334 | 1500 | 0.1283 | 0.9587 | |
|
| 0.2238 | 0.4623 | 1600 | 0.3889 | 0.9356 | |
|
| 0.1845 | 0.4912 | 1700 | 0.1452 | 0.9610 | |
|
| 0.2051 | 0.5201 | 1800 | 0.2200 | 0.9558 | |
|
| 0.2094 | 0.5490 | 1900 | 0.1520 | 0.9646 | |
|
| 0.2217 | 0.5779 | 2000 | 0.3833 | 0.9265 | |
|
| 0.2763 | 0.6068 | 2100 | 0.1593 | 0.9594 | |
|
| 0.2033 | 0.6357 | 2200 | 0.1518 | 0.9626 | |
|
| 0.2259 | 0.6645 | 2300 | 0.1149 | 0.9626 | |
|
| 0.1501 | 0.6934 | 2400 | 0.1935 | 0.9597 | |
|
| 0.1642 | 0.7223 | 2500 | 0.4075 | 0.9269 | |
|
| 0.2433 | 0.7512 | 2600 | 0.1535 | 0.9642 | |
|
| 0.1941 | 0.7801 | 2700 | 0.3230 | 0.9623 | |
|
| 0.1185 | 0.8090 | 2800 | 0.3787 | 0.9691 | |
|
| 0.1735 | 0.8379 | 2900 | 0.3400 | 0.9626 | |
|
| 0.1453 | 0.8668 | 3000 | 0.5315 | 0.9529 | |
|
| 0.164 | 0.8957 | 3100 | 0.2728 | 0.9678 | |
|
| 0.2602 | 0.9246 | 3200 | 0.1789 | 0.9616 | |
|
| 0.1642 | 0.9535 | 3300 | 0.1252 | 0.9675 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.6.0+cu126 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |
|
|