fine_tuned_xsum / README.md
Arihant Tripathi
qwen_new_mage_xsum
6d680d0 verified
metadata
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2-1.5B
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: fine_tuned_xsum
    results: []

fine_tuned_xsum

This model is a fine-tuned version of Qwen/Qwen2-1.5B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1573
  • Accuracy: 0.9597

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7991 0.0289 100 0.3764 0.8394
0.6153 0.0578 200 0.3492 0.8602
0.3929 0.0867 300 0.5004 0.8501
0.7981 0.1156 400 0.3459 0.8677
0.5853 0.1445 500 0.3124 0.8787
0.3284 0.1734 600 0.2438 0.9308
0.3591 0.2023 700 0.2842 0.9041
0.332 0.2311 800 0.3904 0.9038
0.3424 0.2600 900 0.2234 0.9402
0.2609 0.2889 1000 0.2586 0.9249
0.3036 0.3178 1100 0.2775 0.9204
0.2429 0.3467 1200 0.1521 0.9441
0.2495 0.3756 1300 0.2326 0.9512
0.2486 0.4045 1400 0.2712 0.9467
0.1711 0.4334 1500 0.1573 0.9597

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu126
  • Datasets 3.3.2
  • Tokenizers 0.21.0