File size: 3,051 Bytes
e23cfda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2-1.5B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fine_tuned_tldr_callback10
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine_tuned_tldr_callback10
This model is a fine-tuned version of [Qwen/Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1451
- Accuracy: 0.9682
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.8181 | 0.0393 | 100 | 0.2443 | 0.9050 |
| 0.4998 | 0.0785 | 200 | 0.2800 | 0.8754 |
| 0.4488 | 0.1178 | 300 | 0.5770 | 0.8710 |
| 0.3996 | 0.1570 | 400 | 0.1956 | 0.9139 |
| 0.298 | 0.1963 | 500 | 0.3754 | 0.9307 |
| 0.2918 | 0.2356 | 600 | 0.7744 | 0.8905 |
| 0.2906 | 0.2748 | 700 | 0.2349 | 0.9214 |
| 0.2113 | 0.3141 | 800 | 0.2182 | 0.9443 |
| 0.2552 | 0.3534 | 900 | 0.1959 | 0.9501 |
| 0.227 | 0.3926 | 1000 | 0.1768 | 0.9496 |
| 0.2203 | 0.4319 | 1100 | 0.1711 | 0.9439 |
| 0.2212 | 0.4711 | 1200 | 0.1652 | 0.9585 |
| 0.2153 | 0.5104 | 1300 | 0.1695 | 0.9567 |
| 0.1975 | 0.5497 | 1400 | 0.1776 | 0.9536 |
| 0.1866 | 0.5889 | 1500 | 0.1516 | 0.9602 |
| 0.2209 | 0.6282 | 1600 | 0.1139 | 0.9691 |
| 0.1788 | 0.6675 | 1700 | 0.1995 | 0.9563 |
| 0.1808 | 0.7067 | 1800 | 0.1857 | 0.9554 |
| 0.2401 | 0.7460 | 1900 | 0.1397 | 0.9686 |
| 0.1602 | 0.7852 | 2000 | 0.1974 | 0.9620 |
| 0.2206 | 0.8245 | 2100 | 0.1392 | 0.9633 |
| 0.1609 | 0.8638 | 2200 | 0.1904 | 0.9620 |
| 0.2108 | 0.9030 | 2300 | 0.1774 | 0.9611 |
| 0.1408 | 0.9423 | 2400 | 0.1598 | 0.9669 |
| 0.1696 | 0.9815 | 2500 | 0.1694 | 0.9660 |
| 0.1231 | 1.0208 | 2600 | 0.1451 | 0.9682 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu126
- Datasets 3.3.2
- Tokenizers 0.21.0
|