fine_tuned_tldr_callback10

This model is a fine-tuned version of Qwen/Qwen2-1.5B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1451
  • Accuracy: 0.9682

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8181 0.0393 100 0.2443 0.9050
0.4998 0.0785 200 0.2800 0.8754
0.4488 0.1178 300 0.5770 0.8710
0.3996 0.1570 400 0.1956 0.9139
0.298 0.1963 500 0.3754 0.9307
0.2918 0.2356 600 0.7744 0.8905
0.2906 0.2748 700 0.2349 0.9214
0.2113 0.3141 800 0.2182 0.9443
0.2552 0.3534 900 0.1959 0.9501
0.227 0.3926 1000 0.1768 0.9496
0.2203 0.4319 1100 0.1711 0.9439
0.2212 0.4711 1200 0.1652 0.9585
0.2153 0.5104 1300 0.1695 0.9567
0.1975 0.5497 1400 0.1776 0.9536
0.1866 0.5889 1500 0.1516 0.9602
0.2209 0.6282 1600 0.1139 0.9691
0.1788 0.6675 1700 0.1995 0.9563
0.1808 0.7067 1800 0.1857 0.9554
0.2401 0.7460 1900 0.1397 0.9686
0.1602 0.7852 2000 0.1974 0.9620
0.2206 0.8245 2100 0.1392 0.9633
0.1609 0.8638 2200 0.1904 0.9620
0.2108 0.9030 2300 0.1774 0.9611
0.1408 0.9423 2400 0.1598 0.9669
0.1696 0.9815 2500 0.1694 0.9660
0.1231 1.0208 2600 0.1451 0.9682

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu126
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
3
Safetensors
Model size
1.54B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for EndLessTime/fine_tuned_tldr_callback10

Base model

Qwen/Qwen2-1.5B
Finetuned
(65)
this model