fine_tuned_roct_callback10
This model is a fine-tuned version of Qwen/Qwen2-1.5B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1842
- Accuracy: 0.9587
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6746 | 0.0309 | 100 | 1.1656 | 0.8788 |
0.5117 | 0.0617 | 200 | 0.3858 | 0.8788 |
0.3739 | 0.0926 | 300 | 1.0712 | 0.8788 |
0.4961 | 0.1235 | 400 | 0.3711 | 0.8274 |
0.2688 | 0.1543 | 500 | 0.1956 | 0.8965 |
0.2633 | 0.1852 | 600 | 0.2161 | 0.9 |
0.3015 | 0.2160 | 700 | 0.2866 | 0.9073 |
0.2304 | 0.2469 | 800 | 0.2740 | 0.9017 |
0.2114 | 0.2778 | 900 | 0.2462 | 0.9191 |
0.2807 | 0.3086 | 1000 | 0.2409 | 0.9125 |
0.2323 | 0.3395 | 1100 | 0.3777 | 0.8837 |
0.2514 | 0.3704 | 1200 | 0.2062 | 0.9281 |
0.2278 | 0.4012 | 1300 | 0.1762 | 0.9351 |
0.2099 | 0.4321 | 1400 | 0.1856 | 0.9247 |
0.2004 | 0.4630 | 1500 | 0.2237 | 0.9313 |
0.2177 | 0.4938 | 1600 | 0.1715 | 0.9313 |
0.3046 | 0.5247 | 1700 | 0.1545 | 0.9434 |
0.2179 | 0.5556 | 1800 | 0.1713 | 0.9472 |
0.1665 | 0.5864 | 1900 | 0.1142 | 0.9549 |
0.2066 | 0.6173 | 2000 | 0.1424 | 0.9563 |
0.1908 | 0.6481 | 2100 | 0.1284 | 0.9635 |
0.145 | 0.6790 | 2200 | 0.1550 | 0.9618 |
0.147 | 0.7099 | 2300 | 0.7114 | 0.8826 |
0.1634 | 0.7407 | 2400 | 0.1536 | 0.9625 |
0.1184 | 0.7716 | 2500 | 0.2507 | 0.9458 |
0.1771 | 0.8025 | 2600 | 0.1449 | 0.9583 |
0.1399 | 0.8333 | 2700 | 0.2384 | 0.9347 |
0.1709 | 0.8642 | 2800 | 0.1296 | 0.9542 |
0.1545 | 0.8951 | 2900 | 0.1842 | 0.9587 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu126
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for EndLessTime/fine_tuned_roct_callback10
Base model
Qwen/Qwen2-1.5B