Arihant Tripathi
qwen_new_mage_per_domain_balanced_32B
045879c verified
|
raw
history blame
2.25 kB
metadata
library_name: transformers
license: other
base_model: Qwen/Qwen1.5-32B
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: fine_tuned_per_domain_balanced_32B
    results: []

fine_tuned_per_domain_balanced_32B

This model is a fine-tuned version of Qwen/Qwen1.5-32B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7888
  • Accuracy: 0.8908

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8972 0.0029 500 1.5903 0.7475
2.0489 0.0057 1000 1.1390 0.8111
1.2974 0.0086 1500 1.2533 0.8057
1.3929 0.0114 2000 1.3143 0.8156
0.5961 0.0143 2500 1.0441 0.8451
0.4478 0.0172 3000 1.0491 0.8496
1.3262 0.0200 3500 1.0400 0.8478
0.9755 0.0229 4000 0.9457 0.8621
0.7849 0.0258 4500 0.8249 0.8684
0.7091 0.0286 5000 0.7580 0.8836
0.527 0.0315 5500 0.8654 0.8756
0.8061 0.0343 6000 0.8890 0.8782
0.1774 0.0372 6500 0.7888 0.8908

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu126
  • Datasets 3.3.2
  • Tokenizers 0.21.0