Arihant Tripathi
qwen_new_mage_hswag_callback10
2c01c39 verified
metadata
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2-1.5B
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: fine_tuned_hswag_callback10
    results: []

fine_tuned_hswag_callback10

This model is a fine-tuned version of Qwen/Qwen2-1.5B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1861
  • Accuracy: 0.9602

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7551 0.0322 100 0.4489 0.9012
0.3977 0.0644 200 0.5959 0.8943
0.3608 0.0966 300 0.2267 0.9258
0.3092 0.1287 400 0.1801 0.9374
0.1932 0.1609 500 0.1921 0.9562
0.1405 0.1931 600 0.2487 0.9573
0.3093 0.2253 700 0.1245 0.9573
0.1804 0.2575 800 0.1496 0.9602
0.1717 0.2897 900 0.1923 0.9573
0.1986 0.3219 1000 0.4235 0.9167
0.1786 0.3540 1100 0.1436 0.9591
0.1563 0.3862 1200 0.2635 0.9468
0.188 0.4184 1300 0.1891 0.9540
0.137 0.4506 1400 0.2017 0.9348
0.1438 0.4828 1500 0.1510 0.9660
0.1241 0.5150 1600 0.2152 0.9551
0.1793 0.5472 1700 0.1861 0.9602

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu126
  • Datasets 3.3.2
  • Tokenizers 0.21.0