Arihant Tripathi
qwen_new_mage_cmv_callback10
3cb4d77 verified
|
raw
history blame
2.61 kB
metadata
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2-1.5B
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: fine_tuned_cmv_callback10
    results: []

fine_tuned_cmv_callback10

This model is a fine-tuned version of Qwen/Qwen2-1.5B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0523
  • Accuracy: 0.9931

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3459 0.1083 100 0.1297 0.9602
0.1385 0.2167 200 0.0771 0.9805
0.0918 0.3250 300 0.0951 0.9825
0.1103 0.4334 400 0.0834 0.9813
0.0943 0.5417 500 0.0607 0.9821
0.0692 0.6501 600 0.0714 0.9866
0.0584 0.7584 700 0.0607 0.9858
0.0599 0.8667 800 0.0531 0.9874
0.0672 0.9751 900 0.0312 0.9915
0.0086 1.0834 1000 0.0494 0.9919
0.0084 1.1918 1100 0.0621 0.9890
0.0225 1.3001 1200 0.0433 0.9927
0.0146 1.4085 1300 0.0684 0.9870
0.0126 1.5168 1400 0.0960 0.9878
0.0143 1.6251 1500 0.0454 0.9927
0.0081 1.7335 1600 0.0671 0.9907
0.0064 1.8418 1700 0.0526 0.9919
0.0007 1.9502 1800 0.0458 0.9931
0.003 2.0585 1900 0.0523 0.9931

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu126
  • Datasets 3.3.2
  • Tokenizers 0.21.0