DataVortexS-10.7B-dpo-v1.4

DataVortex

Our Team

Research & Engineering Product Management
Kwangseok Yang Seunghyun Choi
Jeongwon Choi Hyoseok Choi

Model Details

Base Model

yanolja/Bookworm-10.7B-v0.4-DPO

Trained On

  • OS: Ubuntu 22.04
  • GPU: H100 80GB 4ea
  • transformers: v4.36.2

Instruction format

It follows ChatML format.

E.g.

text = """\
<|im_start|>system
당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€.<|im_end|>
<|im_start|>user
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?<|im_end|>
<|im_start|>assistant
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€.<|im_end|>
<|im_start|>user
μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?<|im_end|>
<|im_start|>assistant
"""

Model Benchmark

Ko LM Eval Harness

Task 0-shot 5-shot 10-shot 50-shot
kobest_boolq 0.757911 0.907177 0.924496 0.605075
kobest_copa 0.740605 0.801886 0.831886 0.849978
kobest_hellaswag 0.445176 0.454788 0.468654 0.45218
kobest_sentineg 0.415445 0.95214 0.962217 0.967254
Average 0.589784 0.778998 0.796813 0.718622

Ko-LLM-Leaderboard

Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
53.81 52.05 62.93 53.59 50.42 50.06

Implementation Code

This model contains the chat_template instruction format.
You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.4")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.4")

messages = [
    {"role": "system", "content": "당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?"},
    {"role": "assistant", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

License

This model is licensed under the cc-by-nc-4.0. which allows others to share and adapt the model for non-commercial purposes.

Downloads last month
3,519
Safetensors
Model size
10.8B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Edentns/DataVortexS-10.7B-dpo-v1.4

Finetuned
(1)
this model
Quantizations
1 model

Collection including Edentns/DataVortexS-10.7B-dpo-v1.4