trocr-base-printed-synthetic_dataset_ocr

This model is a fine-tuned version of microsoft/trocr-base-printed on an unknown dataset.

Model description

Here is the link to my code for this model: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/tree/main/Optical%20Character%20Recognition%20(OCR)/20%2C000%20Synthetic%20Samples%20Dataset

Intended uses & limitations

This model could be used to read labels with printed text.

Training and evaluation data

Here is the link to the dataset that I used for this model: https://www.kaggle.com/datasets/ravi02516/20k-synthetic-ocr-dataset

Character Length for Training Dataset:

Input Character Length for Training Dataset

Character Length for Evaluation Dataset:

Input Character Length for Evaluation Dataset

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

CER = 0.003 (Actually, 0.002896524170994806)

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2

*Note: Please make sure to give proper credit to the owner(s) of the data and developers of the model (microsoft/trocr-base-printed).

Model Checkpoint

@misc{li2021trocr, title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei}, year={2021}, eprint={2109.10282}, archivePrefix={arXiv}, primaryClass={cs.CL}}

Metric (Character Error Rate [CER])

@inproceedings{morris2004, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} }

Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including DunnBC22/trocr-base-printed-synthetic_dataset_ocr

Evaluation results