distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0604
- Precision: 0.9262
- Recall: 0.9375
- F1: 0.9318
- Accuracy: 0.9841
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2424 | 1.0 | 878 | 0.0684 | 0.9096 | 0.9206 | 0.9150 | 0.9813 |
0.0524 | 2.0 | 1756 | 0.0607 | 0.9188 | 0.9349 | 0.9268 | 0.9835 |
0.0304 | 3.0 | 2634 | 0.0604 | 0.9262 | 0.9375 | 0.9318 | 0.9841 |
Framework versions
- Transformers 4.12.3
- Pytorch 1.9.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
- Downloads last month
- 128
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train Duc/distilbert-base-uncased-finetuned-ner
Evaluation results
- Precision on conll2003self-reported0.926
- Recall on conll2003self-reported0.937
- F1 on conll2003self-reported0.932
- Accuracy on conll2003self-reported0.984