MaskFormer for Normal/Abnormal Detection

This model is fine-tuned to detect and segment regions classified as either "Normal" or "Abnormal".

Model description

This is a MaskFormer model fine-tuned on a custom dataset with polygon annotations in COCO format. It has two classes:

  • Normal (ID: 0)
  • Abnormal (ID: 1)

Intended uses & limitations

This model is intended for instance segmentation tasks to identify normal and abnormal regions in images.

How to use in CVAT

  1. In CVAT, go to Models โ†’ Add Model
  2. Select Hugging Face as the source
  3. Enter the model path: "{your-username}/maskformer-abnormal-detection"
  4. Configure the appropriate mapping for your labels (Normal and Abnormal)

Usage in Python

from transformers import MaskFormerForInstanceSegmentation, MaskFormerImageProcessor
import torch
from PIL import Image

# Load model and processor
model = MaskFormerForInstanceSegmentation.from_pretrained("{your-username}/maskformer-abnormal-detection")
processor = MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-tiny-ade")

# Prepare image
image = Image.open("your_image.jpg")
inputs = processor(images=image, return_tensors="pt")

# Make prediction
with torch.no_grad():
    outputs = model(**inputs)

# Process outputs for visualization
# (see example code in model repository)
Downloads last month
6
Safetensors
Model size
41.7M params
Tensor type
I64
ยท
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support