Dracones's picture
Upload folder using huggingface_hub
48e379e verified
|
raw
history blame
7.59 kB
---
library_name: transformers
language:
- en
- fr
- de
- es
- it
- pt
- ja
- ko
- zh
- ar
license: cc-by-nc-4.0
tags:
- exl2
---
# c4ai-command-r-v01 - EXL2 4.0bpw
This is a 4.0bpw EXL2 quant of [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
Details about the model can be found at the above model page.
## EXL2 Version
These quants were made with exllamav2 version 0.0.18. Quants made on this version of EXL2 may not work on older versions of the exllamav2 library.
If you have problems loading these models, please update Text Generation WebUI to the latest version.
### RP Calibrated
The rpcal quants were made using data/PIPPA-cleaned/pippa_raw_fix.parquet for calibration.
## Perplexity Scoring
Below are the perplexity scores for the EXL2 models. A lower score is better.
### Stock Quants
| Quant Level | Perplexity Score |
|-------------|------------------|
| 8.0 | 6.4436 |
| 7.0 | 6.4372 |
| 6.0 | 6.4391 |
| 5.0 | 6.4526 |
| 4.5 | 6.4629 |
| 4.0 | 6.5081 |
| 3.5 | 6.6301 |
| 3.0 | 6.7974 |
### RP Calibrated Quants
| Quant Level | Perplexity Score |
|-------------|------------------|
| 8.0 | 6.4331 |
| 7.0 | 6.4347 |
| 6.0 | 6.4356 |
| 5.0 | 6.4740 |
| 4.5 | 6.4875 |
| 4.0 | 6.5039 |
| 3.5 | 6.6928 |
| 3.0 | 6.8913 |
## EQ Bench
Here are the EQ Bench scores for the EXL2 quants using Alpaca, ChatML, Command-R and Command-R-Plus prompt templates. A higher score is better.
### Quants
| Quant Size | Instruct Template | Score |
|------------|-------------------|-------|
| 8.0 | Alpaca | 56.67 |
| 8.0 | ChatML | 47.28 |
| 8.0 | Command-R | 58.46 |
| 8.0 | Command-R-Plus | 58.49 |
| 7.0 | Alpaca | 57.5 |
| 7.0 | ChatML | 46.86 |
| 7.0 | Command-R | 57.29 |
| 7.0 | Command-R-Plus | 57.91 |
| 6.0 | Alpaca | 56.5 |
| 6.0 | ChatML | 48.61 |
| 6.0 | Command-R | 57.8 |
| 6.0 | Command-R-Plus | 58.64 |
| 5.0 | Alpaca | 54.64 |
| 5.0 | ChatML | 48.48 |
| 5.0 | Command-R | 57.14 |
| 5.0 | Command-R-Plus | 56.63 |
| 4.5 | Alpaca | 57.75 |
| 4.5 | ChatML | 48.1 |
| 4.5 | Command-R | 57.08 |
| 4.5 | Command-R-Plus | 56.7 |
| 4.0 | Alpaca | 53.41 |
| 4.0 | ChatML | 50.99 |
| 4.0 | Command-R | 57.46 |
| 4.0 | Command-R-Plus | 57.99 |
| 3.5 | Alpaca | 56.68 |
| 3.5 | ChatML | 52.72 |
| 3.5 | Command-R | 60.91 |
| 3.5 | Command-R-Plus | 60.91 |
| 3.0 | Alpaca | 36.45 |
| 3.0 | ChatML | 39.19 |
| 3.0 | Command-R | 49.17 |
| 3.0 | Command-R-Plus | 49.68 |
### RP Calibrated Quants
| Quant Size | Instruct Template | Score |
|------------|-------------------|-------|
| 8.0 | Alpaca | 56.23 |
| 8.0 | ChatML | 48.42 |
| 8.0 | Command-R | 58.41 |
| 8.0 | Command-R-Plus | 58.41 |
| 7.0 | Alpaca | 57.01 |
| 7.0 | ChatML | 48.47 |
| 7.0 | Command-R | 57.85 |
| 7.0 | Command-R-Plus | 57.67 |
| 6.0 | Alpaca | 58.33 |
| 6.0 | ChatML | 50.93 |
| 6.0 | Command-R | 60.32 |
| 6.0 | Command-R-Plus | 59.83 |
| 5.0 | Alpaca | 55.28 |
| 5.0 | ChatML | 50.29 |
| 5.0 | Command-R | 58.96 |
| 5.0 | Command-R-Plus | 59.23 |
| 4.5 | Alpaca | 55.01 |
| 4.5 | ChatML | 46.63 |
| 4.5 | Command-R | 57.7 |
| 4.5 | Command-R-Plus | 59.24 |
| 4.0 | Alpaca | 49.76 |
| 4.0 | ChatML | 47.13 |
| 4.0 | Command-R | 54.76 |
| 4.0 | Command-R-Plus | 55.5 |
| 3.5 | Alpaca | 56.39 |
| 3.5 | ChatML | 52.98 |
| 3.5 | Command-R | 59.19 |
| 3.5 | Command-R-Plus | 58.32 |
| 3.0 | Alpaca | 50.36 |
| 3.0 | ChatML | 47.94 |
| 3.0 | Command-R | 54.89 |
| 3.0 | Command-R-Plus | 53.61 |
### Command-R-Plus Template
This is the Command-R-Plus template yaml that was used in EQ bench(which uses Text Generation Web UI yaml templates). It adds BOS_TOKEN into the starter prompt.
_text-generation-webui/instruction-templates/Command-R-Plus.yaml_:
```yaml
instruction_template: |-
{%- if messages[0]['role'] == 'system' -%}
{%- set loop_messages = messages[1:] -%}
{%- set system_message = messages[0]['content'] -%}
{%- elif false == true -%}
{%- set loop_messages = messages -%}
{%- set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' -%}
{%- else -%}
{%- set loop_messages = messages -%}
{%- set system_message = false -%}
{%- endif -%}
{%- if system_message != false -%}
{{ '<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}
{%- endif -%}
{%- for message in loop_messages -%}
{%- set content = message['content'] -%}
{%- if message['role'] == 'user' -%}
{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}
{%- elif message['role'] == 'assistant' -%}
{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}
{%- endif -%}
{%- endfor -%}
{%- if add_generation_prompt -%}
{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}
{%- endif -%}
```
### Perplexity Script
This was the script used for perplexity testing.
```bash
#!/bin/bash
# Activate the conda environment
source ~/miniconda3/etc/profile.d/conda.sh
conda activate exllamav2
# Set the model name and bit size
MODEL_NAME="c4ai-command-r-v01"
BIT_PRECISIONS=(8.0 7.0 6.0 5.0 4.5 4.0 3.5 3.0)
# Print the markdown table header
echo "| Quant Level | Perplexity Score |"
echo "|-------------|------------------|"
for BIT_PRECISION in "${BIT_PRECISIONS[@]}"
do
MODEL_DIR="models/${MODEL_NAME}_exl2_${BIT_PRECISION}bpw"
# MODEL_DIR="models/${MODEL_NAME}_exl2_${BIT_PRECISION}bpw-rpcal"
if [ -d "$MODEL_DIR" ]; then
output=$(python test_inference.py -m "$MODEL_DIR" -gs 22,24 -ed data/wikitext/wikitext-2-v1.parquet)
score=$(echo "$output" | grep -oP 'Evaluation perplexity: \K[\d.]+')
echo "| $BIT_PRECISION | $score |"
fi
done
```
## Quant Details
This is the script used for quantization.
```bash
#!/bin/bash
# Activate the conda environment
source ~/miniconda3/etc/profile.d/conda.sh
conda activate exllamav2
# Set the model name and bit size
MODEL_NAME="c4ai-command-r-v01"
# Define variables
MODEL_DIR="models/$MODEL_NAME"
OUTPUT_DIR="exl2_$MODEL_NAME"
MEASUREMENT_FILE="measurements/$MODEL_NAME.json"
# CALIBRATION_DATASET="data/PIPPA-cleaned/pippa_raw_fix.parquet"
# Create the measurement file if needed
if [ ! -f "$MEASUREMENT_FILE" ]; then
echo "Creating $MEASUREMENT_FILE"
# Create directories
if [ -d "$OUTPUT_DIR" ]; then
rm -r "$OUTPUT_DIR"
fi
mkdir "$OUTPUT_DIR"
# python convert.py -i $MODEL_DIR -o $OUTPUT_DIR -nr -om $MEASUREMENT_FILE -c $CALIBRATION_DATASET
python convert.py -i $MODEL_DIR -o $OUTPUT_DIR -nr -om $MEASUREMENT_FILE
fi
# Choose one of the below. Either create a single quant for testing or a batch of them.
# BIT_PRECISIONS=(5.0)
BIT_PRECISIONS=(8.0 7.0 6.0 5.0 4.5 4.0 3.5 3.0)
for BIT_PRECISION in "${BIT_PRECISIONS[@]}"
do
CONVERTED_FOLDER="models/${MODEL_NAME}_exl2_${BIT_PRECISION}bpw"
# If it doesn't already exist, make the quant
if [ ! -d "$CONVERTED_FOLDER" ]; then
echo "Creating $CONVERTED_FOLDER"
# Create directories
if [ -d "$OUTPUT_DIR" ]; then
rm -r "$OUTPUT_DIR"
fi
mkdir "$OUTPUT_DIR"
mkdir "$CONVERTED_FOLDER"
# Run conversion commands
# python convert.py -i $MODEL_DIR -o $OUTPUT_DIR -nr -m $MEASUREMENT_FILE -b $BIT_PRECISION -c $CALIBRATION_DATASET -cf $CONVERTED_FOLDER
python convert.py -i $MODEL_DIR -o $OUTPUT_DIR -nr -m $MEASUREMENT_FILE -b $BIT_PRECISION -cf $CONVERTED_FOLDER
fi
done
```