DopeorNope's picture
Create README.md
b50693b
---
language:
- ko
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
---
**The license is `cc-by-nc-sa-4.0`.**
# **🐻‍❄️You_can_cry_Snowman-13B🐻‍❄️**
![img](https://drive.google.com/uc?export=view&id=11c1FV1hKPXriGJRVhNDN-9up0wMF9QZk)
## Model Details
**Model Developers** Seungyoo Lee(DopeorNope)
I am in charge of Large Language Models (LLMs) at Markr AI team in South Korea.
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture**
You_can_cry_Snowman-13B is an auto-regressive language model based on the SOLAR architecture.
---
## **Base Model**
[kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct)
[Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct](https://huggingface.co/Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct)
## **Implemented Method**
I have merged two models by increasing the parameter size to create a larger model.
I wanted to check how much the performance of the SOLAR base model changes when the scale of the parameters is increased.
---
# Implementation Code
## Load model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "DopeorNope/You_can_cry_Snowman-13B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```
---