metadata
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mixtral-8x7B-v0.1
model-index:
- name: mixtral-norobara-qlora-out
results: []
See axolotl config
axolotl version: 0.3.0
base_model: mistralai/Mixtral-8x7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
model_config:
output_router_logits: true
router_aux_loss_coef: 0.02
router_z_loss_coef: 0.001
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: capybara-sharegpt.jsonl
type: sharegpt
conversation: alpaca_multiturn
- path: no-robots-sharegpt-fixed.jsonl
type: sharegpt
conversation: alpaca_multiturn
- path: toxicsharegpt-NoWarning.jsonl
type: sharegpt
conversation: alpaca_multiturn
- path: camel-verified-sharegpt.jsonl
type: sharegpt
conversation: alpaca_multiturn
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: mixtral-norobara-qlora-out
## You can optionally freeze the entire model and unfreeze a subset of parameters
#unfrozen_parameters:
# - lm_head.*
# - model.embed_tokens.*
# - model.layers.2[0-9]+.block_sparse_moe.gate.*
# - model.layers.2[0-9]+.block_sparse_moe.experts.*
# - model.layers.3[0-9]+.block_sparse_moe.gate.*
# - model.layers.3[0-9]+.block_sparse_moe.experts.*
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
#lora_target_modules:
# - gate
# - q_proj
# - k_proj
# - v_proj
# - o_proj
# - w1
# - w2
# - w3
wandb_project: mixtral-lora
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold:
loss_watchdog_patience:
warmup_steps: 10
evals_per_epoch:
eval_table_size:
eval_table_max_new_tokens:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
mixtral-norobara-qlora-out
This model was trained from scratch on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Framework versions
- PEFT 0.6.0