mask2former-finetuned-ER-Mito-LD3

This model is a fine-tuned version of facebook/mask2former-swin-base-IN21k-ade-semantic on the Dnq2025/Mask2former_Pretrain dataset. It achieves the following results on the evaluation set:

  • Loss: 39.9236
  • Dummy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 1337
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: polynomial
  • training_steps: 12900

Training results

Training Loss Epoch Step Validation Loss Dummy
57.794 1.0 129 47.5030 1.0
45.635 2.0 258 42.4622 1.0
43.6742 3.0 387 40.1383 1.0
37.5286 4.0 516 41.1964 1.0
33.7618 5.0 645 34.4374 1.0
31.5899 6.0 774 39.8242 1.0
29.0727 7.0 903 33.3223 1.0
27.8483 8.0 1032 30.9625 1.0
26.0904 9.0 1161 31.7084 1.0
26.1043 10.0 1290 31.8088 1.0
24.3038 11.0 1419 30.3361 1.0
23.6493 12.0 1548 30.2030 1.0
23.9146 13.0 1677 31.0806 1.0
21.9133 14.0 1806 31.3974 1.0
22.3071 15.0 1935 32.0925 1.0
21.0819 16.0 2064 29.9367 1.0
21.0089 17.0 2193 30.0420 1.0
20.9169 18.0 2322 29.2938 1.0
19.7935 19.0 2451 31.3945 1.0
19.8749 20.0 2580 29.8457 1.0
19.2973 21.0 2709 29.0713 1.0
18.5436 22.0 2838 29.0846 1.0
18.5996 23.0 2967 29.8810 1.0
19.1228 24.0 3096 29.3016 1.0
18.0519 25.0 3225 30.7155 1.0
17.7073 26.0 3354 28.7168 1.0
17.5055 27.0 3483 28.9899 1.0
17.4854 28.0 3612 30.1944 1.0
17.0048 29.0 3741 29.2829 1.0
16.8731 30.0 3870 30.1208 1.0
16.683 31.0 3999 30.7583 1.0
16.6109 32.0 4128 30.6232 1.0
15.8261 33.0 4257 29.4162 1.0
16.9002 34.0 4386 30.4388 1.0
16.3081 35.0 4515 29.9756 1.0
15.4745 36.0 4644 28.8214 1.0
15.938 37.0 4773 29.1001 1.0
15.9947 38.0 4902 31.0533 1.0
15.2328 39.0 5031 31.6211 1.0
15.202 40.0 5160 33.1383 1.0
15.0583 41.0 5289 31.4089 1.0
14.573 42.0 5418 31.5681 1.0
14.7401 43.0 5547 30.5548 1.0
14.6052 44.0 5676 31.3953 1.0
14.1299 45.0 5805 30.8153 1.0
13.6851 46.0 5934 30.9693 1.0
14.6677 47.0 6063 31.9361 1.0
13.6493 48.0 6192 34.3328 1.0
14.166 49.0 6321 32.6231 1.0
13.7388 50.0 6450 33.1736 1.0
13.0849 51.0 6579 34.9522 1.0
13.2502 52.0 6708 35.7990 1.0
13.5116 53.0 6837 31.5737 1.0
12.6993 54.0 6966 33.2650 1.0
13.3602 55.0 7095 34.8914 1.0
12.9585 56.0 7224 35.9862 1.0
12.7434 57.0 7353 34.9106 1.0
12.7299 58.0 7482 34.0106 1.0
12.717 59.0 7611 36.3588 1.0
12.0563 60.0 7740 35.0923 1.0
13.012 61.0 7869 38.7323 1.0
12.2878 62.0 7998 34.9967 1.0
12.2794 63.0 8127 37.5577 1.0
12.4147 64.0 8256 37.2733 1.0
12.0032 65.0 8385 35.3015 1.0
12.2793 66.0 8514 35.2806 1.0
12.2309 67.0 8643 36.2488 1.0
11.7082 68.0 8772 35.6687 1.0
11.8694 69.0 8901 36.0470 1.0
11.782 70.0 9030 35.4055 1.0
11.6254 71.0 9159 36.7066 1.0
11.5873 72.0 9288 36.1084 1.0
11.6251 73.0 9417 38.2932 1.0
11.4589 74.0 9546 36.5570 1.0
11.7378 75.0 9675 35.9887 1.0
11.4933 76.0 9804 36.4713 1.0
11.2566 77.0 9933 36.9622 1.0
11.25 78.0 10062 37.1016 1.0
11.2962 79.0 10191 37.8711 1.0
11.0868 80.0 10320 38.5714 1.0
11.2786 81.0 10449 38.1493 1.0
11.1528 82.0 10578 39.0100 1.0
11.089 83.0 10707 38.5474 1.0
10.954 84.0 10836 38.9405 1.0
11.0157 85.0 10965 39.3872 1.0
10.9849 86.0 11094 39.4875 1.0
10.5423 87.0 11223 39.1179 1.0
11.1968 88.0 11352 39.4084 1.0
10.6376 89.0 11481 39.8218 1.0
10.7131 90.0 11610 39.2553 1.0
10.8252 91.0 11739 39.1368 1.0
10.6456 92.0 11868 38.9194 1.0
10.8488 93.0 11997 39.5955 1.0
10.8675 94.0 12126 39.4760 1.0
10.4757 95.0 12255 40.4844 1.0
10.3191 96.0 12384 39.0673 1.0
10.6073 97.0 12513 39.3767 1.0
10.3038 98.0 12642 39.6969 1.0
11.0709 99.0 12771 39.9325 1.0
10.5951 100.0 12900 39.8755 1.0

Framework versions

  • Transformers 4.50.0.dev0
  • Pytorch 2.4.1
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
1
Safetensors
Model size
107M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Dnq2025/mask2former-finetuned-ER-Mito-LD3

Finetuned
(4)
this model