πΈ Iris Species Classifier (Logistic Regression)
This repository provides a lightweight logistic regression model trained on the classic Iris dataset using scikit-learn. It is ideal for educational purposes, experimentation, and demonstration of inference on tabular data.
π§ Model Overview
- Algorithm: Logistic Regression
- Framework: scikit-learn
- Features:
sepal_length
sepal_width
petal_length
petal_width
- Target Classes:
setosa
versicolor
virginica
π Usage Example
Python Code
import joblib
import pandas as pd
model = joblib.load("model.joblib")
sample = pd.DataFrame([[5.1, 3.5, 1.4, 0.2]],
columns=["sepal_length", "sepal_width", "petal_length", "petal_width"])
prediction = model.predict(sample)
print(f"πΈ Predicted class: {prediction[0]}")
π How to load the model
from huggingface_hub import hf_hub_download
import joblib
model_path = hf_hub_download("DmytroSerbeniuk/my-iris-model", "model.joblib")
model = joblib.load(model_path)
CLI Inference
You can also use the provided inference.py
script:
python3 inference.py 6.0 2.2 4.0 1.0
Expected Output:
πΈ Predicted class: versicolor
π§ͺ Sample Predictions
Sepal Length | Sepal Width | Petal Length | Petal Width | Prediction |
---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa |
6.0 | 2.2 | 4.0 | 1.0 | versicolor |
6.9 | 3.1 | 5.4 | 2.1 | virginica |
π¦ Requirements
Dependencies listed in requirements.txt
:
scikit-learn
pandas
joblib
License
my-iris-model is licensed under the Apache 2.0 license
- Downloads last month
- 38
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support