RuGPT2_Gen_News
Предварительно обученная квантованная модель на русском языке с использованием языковой модели "sberbank-ai/rugpt3small_based_on_gpt2". Алгоритм квантования -- GPTQ 4bit
Содержимое карты этой модели было создано, чтобы дополнить предоставленную информацию и привести конкретные примеры её использования.
Описание модели
RuGPT2_Gen_Comments — это квантованная модель предназначена для демонстрации генерации новостей, предварительно обученная на массиве данных Lenta2 проекта CORUS на русском языке.
Входные данные — это последовательности непрерывного текста определенной длины (block_size = 1048).
Проимер использования
!pip install -q auto_gptq
!pip install -q optimum
!pip install -q -U accelerate bitsandbytes datasets peft transformers
# ВАЖНО !!! При возникновении ошибок в Colab, необходимо удалить среду и перезапустить блокнот
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Dmitriy007/rugpt2_gen_news-gptq-4bit")
model = AutoModelForCausalLM.from_pretrained("Dmitriy007/rugpt2_gen_news-gptq-4bit")
input_text = 'Ученик старшего класса лицея № 21 Иван Сидоров из города Адлер полетел в космос на планету Марс.'
inputs = tokenizer(input_text, return_tensors="pt")
model.to('cuda')
inputs.to('cuda')
input_ids = inputs["input_ids"]
output = model.generate(
input_ids,
attention_mask=inputs["attention_mask"],
pad_token_id=model.config.bos_token_id,
max_length=300,
num_beams=5,
num_return_sequences=1,
top_k=50,
top_p=0.90,
no_repeat_ngram_size=2,
temperature=0.7,
early_stopping=True
)
generated_text = list(map(tokenizer.decode, output))
print(generated_text[0])
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.