SentenceTransformer based on cl-nagoya/sup-simcse-ja-base
This is a sentence-transformers model finetuned from cl-nagoya/sup-simcse-ja-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cl-nagoya/sup-simcse-ja-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v0_9_7")
# Run inference
sentences = [
'科目:タイル。名称:床磁器質タイル。',
'科目:ユニット及びその他。名称:#救助袋サイン(ガラス面)。',
'科目:ユニット及びその他。名称:案内スタンドサイン。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 9,054 training samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string int details - min: 11 tokens
- mean: 17.78 tokens
- max: 32 tokens
- 0: ~0.20%
- 1: ~0.30%
- 2: ~0.30%
- 3: ~0.30%
- 4: ~0.20%
- 5: ~0.20%
- 6: ~0.20%
- 7: ~0.20%
- 8: ~0.20%
- 9: ~0.20%
- 10: ~0.30%
- 11: ~0.20%
- 12: ~0.20%
- 13: ~0.20%
- 14: ~0.20%
- 15: ~0.20%
- 16: ~0.20%
- 17: ~0.40%
- 18: ~0.20%
- 19: ~0.20%
- 20: ~0.20%
- 21: ~0.20%
- 22: ~0.20%
- 23: ~0.20%
- 24: ~0.20%
- 25: ~0.20%
- 26: ~0.20%
- 27: ~0.20%
- 28: ~0.20%
- 29: ~0.20%
- 30: ~0.20%
- 31: ~0.20%
- 32: ~0.20%
- 33: ~0.20%
- 34: ~0.20%
- 35: ~0.20%
- 36: ~0.20%
- 37: ~0.20%
- 38: ~0.20%
- 39: ~0.20%
- 40: ~0.20%
- 41: ~0.20%
- 42: ~0.20%
- 43: ~0.60%
- 44: ~0.70%
- 45: ~0.20%
- 46: ~0.20%
- 47: ~0.20%
- 48: ~0.20%
- 49: ~0.20%
- 50: ~0.30%
- 51: ~0.20%
- 52: ~0.20%
- 53: ~0.20%
- 54: ~0.20%
- 55: ~0.30%
- 56: ~0.40%
- 57: ~0.30%
- 58: ~0.20%
- 59: ~0.20%
- 60: ~0.20%
- 61: ~0.20%
- 62: ~0.20%
- 63: ~0.30%
- 64: ~0.20%
- 65: ~0.20%
- 66: ~0.20%
- 67: ~0.20%
- 68: ~0.40%
- 69: ~0.40%
- 70: ~0.20%
- 71: ~0.60%
- 72: ~0.20%
- 73: ~0.20%
- 74: ~0.20%
- 75: ~0.20%
- 76: ~0.20%
- 77: ~0.30%
- 78: ~0.20%
- 79: ~0.40%
- 80: ~0.20%
- 81: ~0.20%
- 82: ~0.50%
- 83: ~0.30%
- 84: ~0.60%
- 85: ~0.20%
- 86: ~0.30%
- 87: ~0.20%
- 88: ~0.20%
- 89: ~0.20%
- 90: ~0.20%
- 91: ~1.10%
- 92: ~1.70%
- 93: ~2.20%
- 94: ~0.50%
- 95: ~0.20%
- 96: ~0.20%
- 97: ~1.50%
- 98: ~0.20%
- 99: ~0.20%
- 100: ~0.20%
- 101: ~0.20%
- 102: ~0.40%
- 103: ~1.60%
- 104: ~0.20%
- 105: ~0.20%
- 106: ~0.40%
- 107: ~0.40%
- 108: ~0.20%
- 109: ~0.20%
- 110: ~0.20%
- 111: ~1.10%
- 112: ~0.20%
- 113: ~0.50%
- 114: ~0.50%
- 115: ~0.20%
- 116: ~0.20%
- 117: ~0.20%
- 118: ~0.20%
- 119: ~0.50%
- 120: ~0.20%
- 121: ~0.20%
- 122: ~0.20%
- 123: ~0.20%
- 124: ~0.20%
- 125: ~0.20%
- 126: ~0.30%
- 127: ~0.20%
- 128: ~0.20%
- 129: ~0.20%
- 130: ~0.50%
- 131: ~0.20%
- 132: ~0.20%
- 133: ~0.20%
- 134: ~0.20%
- 135: ~0.20%
- 136: ~0.20%
- 137: ~0.20%
- 138: ~0.30%
- 139: ~0.70%
- 140: ~0.20%
- 141: ~1.80%
- 142: ~0.20%
- 143: ~1.70%
- 144: ~0.30%
- 145: ~0.30%
- 146: ~0.50%
- 147: ~0.50%
- 148: ~0.50%
- 149: ~0.30%
- 150: ~0.20%
- 151: ~0.20%
- 152: ~0.20%
- 153: ~0.20%
- 154: ~0.20%
- 155: ~0.20%
- 156: ~0.20%
- 157: ~0.20%
- 158: ~0.20%
- 159: ~0.20%
- 160: ~0.20%
- 161: ~0.20%
- 162: ~0.40%
- 163: ~0.20%
- 164: ~0.20%
- 165: ~0.20%
- 166: ~0.20%
- 167: ~0.20%
- 168: ~0.20%
- 169: ~0.30%
- 170: ~0.30%
- 171: ~0.20%
- 172: ~0.20%
- 173: ~0.20%
- 174: ~0.20%
- 175: ~0.20%
- 176: ~0.60%
- 177: ~0.20%
- 178: ~0.20%
- 179: ~0.20%
- 180: ~0.20%
- 181: ~0.20%
- 182: ~0.40%
- 183: ~0.20%
- 184: ~0.20%
- 185: ~0.30%
- 186: ~0.20%
- 187: ~0.90%
- 188: ~0.30%
- 189: ~0.30%
- 190: ~0.20%
- 191: ~0.30%
- 192: ~0.20%
- 193: ~0.80%
- 194: ~0.20%
- 195: ~0.30%
- 196: ~0.20%
- 197: ~0.20%
- 198: ~0.20%
- 199: ~0.20%
- 200: ~0.20%
- 201: ~1.20%
- 202: ~0.40%
- 203: ~0.20%
- 204: ~0.20%
- 205: ~0.20%
- 206: ~0.20%
- 207: ~1.00%
- 208: ~0.20%
- 209: ~0.30%
- 210: ~0.20%
- 211: ~1.10%
- 212: ~0.30%
- 213: ~0.20%
- 214: ~0.20%
- 215: ~0.20%
- 216: ~0.20%
- 217: ~0.20%
- 218: ~0.20%
- 219: ~0.20%
- 220: ~0.30%
- 221: ~0.20%
- 222: ~0.90%
- 223: ~4.70%
- 224: ~0.20%
- 225: ~0.20%
- 226: ~0.20%
- 227: ~0.70%
- 228: ~0.20%
- 229: ~0.80%
- 230: ~0.20%
- 231: ~0.40%
- 232: ~0.30%
- 233: ~0.40%
- 234: ~0.20%
- 235: ~0.30%
- 236: ~0.50%
- 237: ~0.30%
- 238: ~0.20%
- 239: ~0.20%
- 240: ~0.30%
- 241: ~0.30%
- 242: ~0.30%
- 243: ~0.60%
- 244: ~0.20%
- 245: ~0.20%
- 246: ~0.20%
- 247: ~0.30%
- 248: ~0.20%
- 249: ~1.90%
- 250: ~0.20%
- 251: ~0.20%
- 252: ~0.20%
- 253: ~0.20%
- 254: ~0.20%
- 255: ~0.50%
- 256: ~0.20%
- 257: ~0.30%
- 258: ~0.20%
- 259: ~0.20%
- 260: ~1.00%
- 261: ~0.20%
- 262: ~0.20%
- 263: ~0.20%
- 264: ~0.40%
- 265: ~0.20%
- 266: ~0.20%
- 267: ~0.20%
- 268: ~0.20%
- 269: ~0.20%
- 270: ~0.20%
- 271: ~0.20%
- 272: ~3.60%
- 273: ~0.20%
- 274: ~0.20%
- 275: ~0.40%
- 276: ~0.20%
- 277: ~0.20%
- 278: ~0.90%
- 279: ~0.40%
- 280: ~0.20%
- 281: ~2.30%
- 282: ~0.30%
- 283: ~0.20%
- 284: ~0.10%
- Samples:
sentence label 科目:コンクリート。名称:免震基礎天端グラウト注入。
0
科目:コンクリート。名称:免震基礎天端グラウト注入。
0
科目:コンクリート。名称:コンクリートポンプ圧送。
1
- Loss:
BatchAllTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 512per_device_eval_batch_size
: 512learning_rate
: 1e-05weight_decay
: 0.01num_train_epochs
: 200warmup_ratio
: 0.1fp16
: Truebatch_sampler
: group_by_label
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 512per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 200max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: group_by_labelmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
2.8889 | 50 | 0.7963 |
5.8333 | 100 | 0.7067 |
8.7778 | 150 | 0.6532 |
11.7222 | 200 | 0.6806 |
14.6667 | 250 | 0.652 |
17.6111 | 300 | 0.6508 |
20.5556 | 350 | 0.6566 |
23.5 | 400 | 0.6237 |
26.4444 | 450 | 0.6363 |
29.3889 | 500 | 0.6554 |
32.3333 | 550 | 0.6007 |
35.2778 | 600 | 0.6016 |
38.2222 | 650 | 0.5687 |
2.8889 | 50 | 0.5655 |
5.8333 | 100 | 0.6139 |
8.7778 | 150 | 0.514 |
11.7222 | 200 | 0.5867 |
14.6667 | 250 | 0.5699 |
17.6111 | 300 | 0.5472 |
20.5556 | 350 | 0.5793 |
23.5 | 400 | 0.5196 |
26.4444 | 450 | 0.5572 |
29.3889 | 500 | 0.5279 |
32.3333 | 550 | 0.5095 |
35.2778 | 600 | 0.4488 |
38.2222 | 650 | 0.4189 |
41.1667 | 700 | 0.5164 |
44.1111 | 750 | 0.591 |
47.0556 | 800 | 0.52 |
49.9444 | 850 | 0.5235 |
52.8889 | 900 | 0.5317 |
55.8333 | 950 | 0.5517 |
58.7778 | 1000 | 0.5618 |
61.7222 | 1050 | 0.5318 |
64.6667 | 1100 | 0.4685 |
67.6111 | 1150 | 0.4836 |
70.5556 | 1200 | 0.5426 |
73.5 | 1250 | 0.5356 |
76.4444 | 1300 | 0.4231 |
79.3889 | 1350 | 0.5104 |
82.3333 | 1400 | 0.4944 |
85.2778 | 1450 | 0.5301 |
88.2222 | 1500 | 0.4499 |
91.1667 | 1550 | 0.4745 |
94.1111 | 1600 | 0.4432 |
97.0556 | 1650 | 0.3892 |
99.9444 | 1700 | 0.4429 |
102.8889 | 1750 | 0.4973 |
105.8333 | 1800 | 0.5222 |
108.7778 | 1850 | 0.4502 |
111.7222 | 1900 | 0.4073 |
114.6667 | 1950 | 0.408 |
117.6111 | 2000 | 0.403 |
120.5556 | 2050 | 0.4122 |
123.5 | 2100 | 0.4357 |
126.4444 | 2150 | 0.4765 |
129.3889 | 2200 | 0.4069 |
132.3333 | 2250 | 0.388 |
135.2778 | 2300 | 0.341 |
138.2222 | 2350 | 0.333 |
141.1667 | 2400 | 0.4587 |
144.1111 | 2450 | 0.355 |
147.0556 | 2500 | 0.3552 |
149.9444 | 2550 | 0.3804 |
152.8889 | 2600 | 0.3692 |
155.8333 | 2650 | 0.3367 |
158.7778 | 2700 | 0.3662 |
161.7222 | 2750 | 0.3089 |
164.6667 | 2800 | 0.3016 |
167.6111 | 2850 | 0.3252 |
170.5556 | 2900 | 0.3409 |
173.5 | 2950 | 0.3128 |
176.4444 | 3000 | 0.3287 |
179.3889 | 3050 | 0.3148 |
182.3333 | 3100 | 0.3843 |
185.2778 | 3150 | 0.2281 |
188.2222 | 3200 | 0.2973 |
191.1667 | 3250 | 0.2891 |
194.1111 | 3300 | 0.3623 |
197.0556 | 3350 | 0.3626 |
199.9444 | 3400 | 0.2931 |
202.8889 | 3450 | 0.2755 |
205.8333 | 3500 | 0.2849 |
208.7778 | 3550 | 0.2608 |
211.7222 | 3600 | 0.3081 |
214.6667 | 3650 | 0.2724 |
217.6111 | 3700 | 0.2583 |
220.5556 | 3750 | 0.3132 |
223.5 | 3800 | 0.196 |
226.4444 | 3850 | 0.2554 |
229.3889 | 3900 | 0.2 |
232.3333 | 3950 | 0.2936 |
235.2778 | 4000 | 0.2326 |
238.2222 | 4050 | 0.2031 |
241.1667 | 4100 | 0.2492 |
244.1111 | 4150 | 0.2234 |
247.0556 | 4200 | 0.3034 |
249.9444 | 4250 | 0.2325 |
252.8889 | 4300 | 0.2453 |
255.8333 | 4350 | 0.2848 |
258.7778 | 4400 | 0.2447 |
261.7222 | 4450 | 0.2599 |
264.6667 | 4500 | 0.2073 |
267.6111 | 4550 | 0.2134 |
270.5556 | 4600 | 0.1886 |
273.5 | 4650 | 0.1229 |
276.4444 | 4700 | 0.2147 |
279.3889 | 4750 | 0.1993 |
282.3333 | 4800 | 0.1814 |
285.2778 | 4850 | 0.202 |
288.2222 | 4900 | 0.1947 |
291.1667 | 4950 | 0.14 |
294.1111 | 5000 | 0.2394 |
297.0556 | 5050 | 0.1798 |
299.9444 | 5100 | 0.1534 |
302.8889 | 5150 | 0.2622 |
305.8333 | 5200 | 0.1636 |
308.7778 | 5250 | 0.1966 |
311.7222 | 5300 | 0.1365 |
314.6667 | 5350 | 0.1501 |
317.6111 | 5400 | 0.1494 |
320.5556 | 5450 | 0.1341 |
323.5 | 5500 | 0.1791 |
326.4444 | 5550 | 0.1609 |
329.3889 | 5600 | 0.2268 |
332.3333 | 5650 | 0.2145 |
335.2778 | 5700 | 0.095 |
338.2222 | 5750 | 0.1161 |
341.1667 | 5800 | 0.1615 |
344.1111 | 5850 | 0.1261 |
347.0556 | 5900 | 0.2022 |
349.9444 | 5950 | 0.1503 |
352.8889 | 6000 | 0.1473 |
355.8333 | 6050 | 0.1703 |
358.7778 | 6100 | 0.1441 |
361.7222 | 6150 | 0.1439 |
364.6667 | 6200 | 0.1192 |
367.6111 | 6250 | 0.1312 |
370.5556 | 6300 | 0.0933 |
373.5 | 6350 | 0.1281 |
376.4444 | 6400 | 0.1516 |
379.3889 | 6450 | 0.1819 |
382.3333 | 6500 | 0.1877 |
385.2778 | 6550 | 0.1372 |
388.2222 | 6600 | 0.1551 |
391.1667 | 6650 | 0.1343 |
394.1111 | 6700 | 0.2394 |
397.0556 | 6750 | 0.1882 |
399.9444 | 6800 | 0.1786 |
402.8889 | 6850 | 0.125 |
405.8333 | 6900 | 0.1059 |
408.7778 | 6950 | 0.1414 |
411.7222 | 7000 | 0.0593 |
414.6667 | 7050 | 0.1037 |
417.6111 | 7100 | 0.098 |
420.5556 | 7150 | 0.1457 |
423.5 | 7200 | 0.1193 |
426.4444 | 7250 | 0.1061 |
429.3889 | 7300 | 0.1305 |
432.3333 | 7350 | 0.1416 |
435.2778 | 7400 | 0.1117 |
438.2222 | 7450 | 0.1003 |
441.1667 | 7500 | 0.1217 |
444.1111 | 7550 | 0.0872 |
447.0556 | 7600 | 0.1219 |
449.9444 | 7650 | 0.1061 |
452.8889 | 7700 | 0.1559 |
455.8333 | 7750 | 0.1599 |
458.7778 | 7800 | 0.1436 |
461.7222 | 7850 | 0.1207 |
464.6667 | 7900 | 0.1272 |
467.6111 | 7950 | 0.1048 |
470.5556 | 8000 | 0.1216 |
473.5 | 8050 | 0.133 |
476.4444 | 8100 | 0.0971 |
479.3889 | 8150 | 0.154 |
482.3333 | 8200 | 0.0697 |
485.2778 | 8250 | 0.136 |
488.2222 | 8300 | 0.1315 |
491.1667 | 8350 | 0.1103 |
494.1111 | 8400 | 0.1065 |
497.0556 | 8450 | 0.0784 |
499.9444 | 8500 | 0.134 |
2.8889 | 50 | 0.0581 |
5.8333 | 100 | 0.0804 |
8.7778 | 150 | 0.1214 |
11.7222 | 200 | 0.0513 |
14.6667 | 250 | 0.0923 |
17.6111 | 300 | 0.1311 |
20.5556 | 350 | 0.0714 |
23.5 | 400 | 0.1101 |
26.4444 | 450 | 0.1146 |
29.3889 | 500 | 0.0916 |
32.3333 | 550 | 0.1554 |
35.2778 | 600 | 0.1609 |
38.2222 | 650 | 0.1276 |
41.1667 | 700 | 0.1207 |
44.1111 | 750 | 0.1132 |
47.0556 | 800 | 0.1013 |
49.9444 | 850 | 0.1374 |
52.8889 | 900 | 0.1983 |
55.8333 | 950 | 0.165 |
58.7778 | 1000 | 0.1318 |
61.7222 | 1050 | 0.1405 |
64.6667 | 1100 | 0.1987 |
67.6111 | 1150 | 0.1422 |
70.5556 | 1200 | 0.082 |
73.5 | 1250 | 0.1607 |
76.4444 | 1300 | 0.1584 |
79.3889 | 1350 | 0.1337 |
82.3333 | 1400 | 0.1547 |
85.2778 | 1450 | 0.1706 |
88.2222 | 1500 | 0.1326 |
91.1667 | 1550 | 0.1441 |
94.1111 | 1600 | 0.2742 |
97.0556 | 1650 | 0.1885 |
99.9444 | 1700 | 0.1234 |
102.8889 | 1750 | 0.1107 |
105.8333 | 1800 | 0.1442 |
108.7778 | 1850 | 0.183 |
111.7222 | 1900 | 0.1245 |
114.6667 | 1950 | 0.1099 |
117.6111 | 2000 | 0.0903 |
120.5556 | 2050 | 0.1725 |
123.5 | 2100 | 0.1066 |
126.4444 | 2150 | 0.2075 |
129.3889 | 2200 | 0.1289 |
132.3333 | 2250 | 0.1013 |
135.2778 | 2300 | 0.1284 |
138.2222 | 2350 | 0.0915 |
141.1667 | 2400 | 0.105 |
144.1111 | 2450 | 0.143 |
147.0556 | 2500 | 0.0864 |
149.9444 | 2550 | 0.1254 |
152.8889 | 2600 | 0.172 |
155.8333 | 2650 | 0.0754 |
158.7778 | 2700 | 0.1027 |
161.7222 | 2750 | 0.1046 |
164.6667 | 2800 | 0.1141 |
167.6111 | 2850 | 0.11 |
170.5556 | 2900 | 0.1139 |
173.5 | 2950 | 0.1151 |
176.4444 | 3000 | 0.0967 |
179.3889 | 3050 | 0.155 |
182.3333 | 3100 | 0.1213 |
185.2778 | 3150 | 0.0937 |
188.2222 | 3200 | 0.1073 |
191.1667 | 3250 | 0.0971 |
194.1111 | 3300 | 0.1513 |
197.0556 | 3350 | 0.103 |
199.9444 | 3400 | 0.1429 |
202.8889 | 3450 | 0.1216 |
205.8333 | 3500 | 0.1303 |
208.7778 | 3550 | 0.083 |
211.7222 | 3600 | 0.0731 |
214.6667 | 3650 | 0.0696 |
217.6111 | 3700 | 0.05 |
220.5556 | 3750 | 0.0824 |
223.5 | 3800 | 0.0483 |
226.4444 | 3850 | 0.0994 |
229.3889 | 3900 | 0.1145 |
232.3333 | 3950 | 0.0616 |
235.2778 | 4000 | 0.0967 |
238.2222 | 4050 | 0.0927 |
241.1667 | 4100 | 0.0531 |
244.1111 | 4150 | 0.0681 |
247.0556 | 4200 | 0.1337 |
249.9444 | 4250 | 0.0586 |
252.8889 | 4300 | 0.1086 |
255.8333 | 4350 | 0.126 |
258.7778 | 4400 | 0.0678 |
261.7222 | 4450 | 0.0651 |
264.6667 | 4500 | 0.0352 |
267.6111 | 4550 | 0.0193 |
270.5556 | 4600 | 0.0517 |
273.5 | 4650 | 0.0617 |
276.4444 | 4700 | 0.0679 |
279.3889 | 4750 | 0.1138 |
282.3333 | 4800 | 0.0617 |
285.2778 | 4850 | 0.118 |
288.2222 | 4900 | 0.1163 |
291.1667 | 4950 | 0.1245 |
294.1111 | 5000 | 0.0556 |
297.0556 | 5050 | 0.04 |
299.9444 | 5100 | 0.0655 |
302.8889 | 5150 | 0.0217 |
305.8333 | 5200 | 0.0486 |
308.7778 | 5250 | 0.1352 |
311.7222 | 5300 | 0.0271 |
314.6667 | 5350 | 0.0747 |
317.6111 | 5400 | 0.008 |
320.5556 | 5450 | 0.0329 |
323.5 | 5500 | 0.0899 |
326.4444 | 5550 | 0.0808 |
329.3889 | 5600 | 0.05 |
332.3333 | 5650 | 0.0759 |
335.2778 | 5700 | 0.0614 |
338.2222 | 5750 | 0.0446 |
341.1667 | 5800 | 0.0516 |
344.1111 | 5850 | 0.0774 |
347.0556 | 5900 | 0.0238 |
349.9444 | 5950 | 0.0753 |
352.8889 | 6000 | 0.0983 |
355.8333 | 6050 | 0.1169 |
358.7778 | 6100 | 0.0832 |
361.7222 | 6150 | 0.0995 |
364.6667 | 6200 | 0.0373 |
367.6111 | 6250 | 0.0629 |
370.5556 | 6300 | 0.0508 |
373.5 | 6350 | 0.086 |
376.4444 | 6400 | 0.0953 |
379.3889 | 6450 | 0.077 |
382.3333 | 6500 | 0.0506 |
385.2778 | 6550 | 0.0654 |
388.2222 | 6600 | 0.0086 |
391.1667 | 6650 | 0.093 |
394.1111 | 6700 | 0.0363 |
397.0556 | 6750 | 0.0165 |
399.9444 | 6800 | 0.0325 |
402.8889 | 6850 | 0.0182 |
405.8333 | 6900 | 0.0386 |
408.7778 | 6950 | 0.0362 |
411.7222 | 7000 | 0.0231 |
414.6667 | 7050 | 0.0136 |
417.6111 | 7100 | 0.0603 |
420.5556 | 7150 | 0.035 |
423.5 | 7200 | 0.039 |
426.4444 | 7250 | 0.0657 |
429.3889 | 7300 | 0.026 |
432.3333 | 7350 | 0.0114 |
435.2778 | 7400 | 0.0348 |
438.2222 | 7450 | 0.0099 |
441.1667 | 7500 | 0.0338 |
444.1111 | 7550 | 0.0283 |
447.0556 | 7600 | 0.0256 |
449.9444 | 7650 | 0.0399 |
452.8889 | 7700 | 0.0471 |
455.8333 | 7750 | 0.0309 |
458.7778 | 7800 | 0.0371 |
461.7222 | 7850 | 0.0139 |
464.6667 | 7900 | 0.0281 |
467.6111 | 7950 | 0.0665 |
470.5556 | 8000 | 0.0612 |
473.5 | 8050 | 0.0872 |
476.4444 | 8100 | 0.0235 |
479.3889 | 8150 | 0.0504 |
482.3333 | 8200 | 0.0398 |
485.2778 | 8250 | 0.0517 |
488.2222 | 8300 | 0.0515 |
491.1667 | 8350 | 0.0072 |
494.1111 | 8400 | 0.0388 |
497.0556 | 8450 | 0.0679 |
499.9444 | 8500 | 0.043 |
2.8889 | 50 | 0.0756 |
5.8333 | 100 | 0.0985 |
8.7778 | 150 | 0.0746 |
11.7222 | 200 | 0.0865 |
14.6667 | 250 | 0.0505 |
17.6111 | 300 | 0.0577 |
20.5556 | 350 | 0.0895 |
23.5 | 400 | 0.0703 |
26.4444 | 450 | 0.0489 |
29.3889 | 500 | 0.0791 |
32.3333 | 550 | 0.0442 |
35.2778 | 600 | 0.0811 |
38.2222 | 650 | 0.0992 |
41.1667 | 700 | 0.1011 |
44.1111 | 750 | 0.1014 |
47.0556 | 800 | 0.0595 |
49.9444 | 850 | 0.1338 |
52.8889 | 900 | 0.0429 |
55.8333 | 950 | 0.0957 |
58.7778 | 1000 | 0.064 |
61.7222 | 1050 | 0.112 |
64.6667 | 1100 | 0.0484 |
67.6111 | 1150 | 0.0395 |
70.5556 | 1200 | 0.0474 |
73.5 | 1250 | 0.0605 |
76.4444 | 1300 | 0.0384 |
79.3889 | 1350 | 0.0782 |
82.3333 | 1400 | 0.0289 |
85.2778 | 1450 | 0.0069 |
88.2222 | 1500 | 0.0396 |
91.1667 | 1550 | 0.0412 |
94.1111 | 1600 | 0.036 |
97.0556 | 1650 | 0.1083 |
99.9444 | 1700 | 0.0171 |
2.8889 | 50 | 0.1652 |
5.8333 | 100 | 0.1102 |
8.7778 | 150 | 0.0945 |
11.7222 | 200 | 0.072 |
14.6667 | 250 | 0.0526 |
17.6111 | 300 | 0.0383 |
20.5556 | 350 | 0.0719 |
23.5 | 400 | 0.0765 |
26.4444 | 450 | 0.1147 |
29.3889 | 500 | 0.1828 |
32.3333 | 550 | 0.0692 |
35.2778 | 600 | 0.0787 |
38.2222 | 650 | 0.1025 |
41.1667 | 700 | 0.0358 |
44.1111 | 750 | 0.0197 |
47.0556 | 800 | 0.0261 |
49.9444 | 850 | 0.0198 |
52.8889 | 900 | 0.0772 |
55.8333 | 950 | 0.0757 |
58.7778 | 1000 | 0.038 |
61.7222 | 1050 | 0.0319 |
64.6667 | 1100 | 0.0304 |
67.6111 | 1150 | 0.0543 |
70.5556 | 1200 | 0.029 |
73.5 | 1250 | 0.0145 |
76.4444 | 1300 | 0.0414 |
79.3889 | 1350 | 0.0862 |
82.3333 | 1400 | 0.0553 |
85.2778 | 1450 | 0.0735 |
88.2222 | 1500 | 0.033 |
91.1667 | 1550 | 0.0218 |
94.1111 | 1600 | 0.0695 |
97.0556 | 1650 | 0.0375 |
99.9444 | 1700 | 0.0324 |
102.8889 | 1750 | 0.0408 |
105.8333 | 1800 | 0.0321 |
108.7778 | 1850 | 0.064 |
111.7222 | 1900 | 0.0547 |
114.6667 | 1950 | 0.0201 |
117.6111 | 2000 | 0.0191 |
120.5556 | 2050 | 0.029 |
123.5 | 2100 | 0.0139 |
126.4444 | 2150 | 0.0267 |
129.3889 | 2200 | 0.0128 |
132.3333 | 2250 | 0.0271 |
135.2778 | 2300 | 0.0203 |
138.2222 | 2350 | 0.0165 |
141.1667 | 2400 | 0.0156 |
144.1111 | 2450 | 0.0097 |
147.0556 | 2500 | 0.029 |
149.9444 | 2550 | 0.0236 |
152.8889 | 2600 | 0.0338 |
155.8333 | 2650 | 0.0226 |
158.7778 | 2700 | 0.0268 |
161.7222 | 2750 | 0.0343 |
164.6667 | 2800 | 0.0482 |
167.6111 | 2850 | 0.0201 |
170.5556 | 2900 | 0.0094 |
173.5 | 2950 | 0.0316 |
176.4444 | 3000 | 0.0132 |
179.3889 | 3050 | 0.0218 |
182.3333 | 3100 | 0.0134 |
185.2778 | 3150 | 0.0208 |
188.2222 | 3200 | 0.0217 |
191.1667 | 3250 | 0.0276 |
194.1111 | 3300 | 0.0067 |
197.0556 | 3350 | 0.015 |
199.9444 | 3400 | 0.01 |
2.8889 | 50 | 0.0623 |
5.8333 | 100 | 0.0555 |
8.7778 | 150 | 0.006 |
11.7222 | 200 | 0.0246 |
14.6667 | 250 | 0.0237 |
17.6111 | 300 | 0.0492 |
20.5556 | 350 | 0.0215 |
23.5 | 400 | 0.0823 |
26.4444 | 450 | 0.0542 |
29.3889 | 500 | 0.033 |
32.3333 | 550 | 0.0438 |
35.2778 | 600 | 0.0647 |
38.2222 | 650 | 0.0759 |
41.1667 | 700 | 0.0464 |
44.1111 | 750 | 0.0994 |
47.0556 | 800 | 0.0564 |
49.9444 | 850 | 0.0591 |
52.8889 | 900 | 0.0912 |
55.8333 | 950 | 0.0557 |
58.7778 | 1000 | 0.0747 |
61.7222 | 1050 | 0.0413 |
64.6667 | 1100 | 0.0384 |
67.6111 | 1150 | 0.083 |
70.5556 | 1200 | 0.0281 |
73.5 | 1250 | 0.0145 |
76.4444 | 1300 | 0.053 |
79.3889 | 1350 | 0.0523 |
82.3333 | 1400 | 0.0407 |
85.2778 | 1450 | 0.0588 |
88.2222 | 1500 | 0.0531 |
91.1667 | 1550 | 0.0146 |
94.1111 | 1600 | 0.0094 |
97.0556 | 1650 | 0.04 |
99.9444 | 1700 | 0.0129 |
102.8889 | 1750 | 0.0391 |
105.8333 | 1800 | 0.0071 |
108.7778 | 1850 | 0.0429 |
111.7222 | 1900 | 0.0454 |
114.6667 | 1950 | 0.0507 |
117.6111 | 2000 | 0.0183 |
120.5556 | 2050 | 0.0398 |
123.5 | 2100 | 0.0117 |
126.4444 | 2150 | 0.023 |
129.3889 | 2200 | 0.0319 |
132.3333 | 2250 | 0.0837 |
135.2778 | 2300 | 0.001 |
138.2222 | 2350 | 0.0114 |
141.1667 | 2400 | 0.0445 |
144.1111 | 2450 | 0.0182 |
147.0556 | 2500 | 0.043 |
149.9444 | 2550 | 0.0317 |
152.8889 | 2600 | 0.0429 |
155.8333 | 2650 | 0.0115 |
158.7778 | 2700 | 0.0077 |
161.7222 | 2750 | 0.0122 |
164.6667 | 2800 | 0.0269 |
167.6111 | 2850 | 0.0061 |
170.5556 | 2900 | 0.0163 |
173.5 | 2950 | 0.0113 |
176.4444 | 3000 | 0.0176 |
179.3889 | 3050 | 0.0 |
182.3333 | 3100 | 0.0397 |
185.2778 | 3150 | 0.0196 |
188.2222 | 3200 | 0.0148 |
191.1667 | 3250 | 0.0084 |
194.1111 | 3300 | 0.0051 |
197.0556 | 3350 | 0.0301 |
199.9444 | 3400 | 0.0049 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchAllTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v0_9_7
Base model
cl-nagoya/sup-simcse-ja-base