You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

onst tf = require('@tensorflow/tfjs-node'); const mongoose = require('mongoose'); const axios = require('axios'); const cheerio = require('cheerio'); const ytdl = require('ytdl-core'); const speech = require('@google-cloud/speech'); const fs = require('fs'); const gpt3Encoder = require('gpt-3-encoder'); // For encoding text for GPT-Neo const { RecursiveCharacterTextSplitter } = require('langchain/text_splitter'); const { HNSWLib } = require("langchain/vectorstores/hnswlib"); const { OpenAIEmbeddings } = require("langchain/embeddings/openai"); const { RetrievalQA } = require("langchain/chains");

// ... (MongoDB connection and data schemas as before)

// 4. Data Collection Functions (Enhanced) // ... (No changes here, same as before)

// 6. Model Definition and Training (Enhanced) async function trainModel() {  // ... (Load or create a TensorFlow.js model)

 // Load the GPT-Neo model  const modelName = 'EleutherAI/gpt-neo-1.3B'; // Choose the desired GPT-Neo model size  const gptNeoModel = await tf.loadGraphModel(https://tfhub.dev/google/${modelName}/1);

 // ... (Train the model using TensorFlow.js and the loaded GPT-Neo model) }

// 8. Kemet AI API (Enhanced) async function answerQuestion(question, userId) {  // Load the HNSWLib vectorstore  const vectorStore = await HNSWLib.load(DATA_DIR + 'hnswlib/', new OpenAIEmbeddings());

 // Encode the question using GPT-3 encoder  const encodedQuestion = gpt3Encoder.encode(question);

 // Retrieve relevant documents from the vectorstore  const relevantDocuments = await vectorStore.similaritySearch(encodedQuestion, k=3); // Get top 3 documents

 // Prepare context for GPT-Neo  let context = "";  for (const doc of relevantDocuments) {   context += doc.pageContent + "\n";  }

 // Generate answer using GPT-Neo  const input_ids = gpt2_tokenizer.encode(context + question, return_tensors='tf');  const output = await gptNeoModel.generate(input_ids, max_length=100, num_return_sequences=1);  const answer = gpt2_tokenizer.decode(output[0], skip_special_tokens=True);

 // Store user feedback  const feedback = await getFeedback(userId, question, answer);  if (feedback) {   // Update the vectorstore with user feedback   // ...  }

 return { answer, sourceDocuments: relevantDocuments }; }

// ... (Other API functions)

// 9. Main Function async function main() {  // ... (Data collection, model training, and evaluation as before)

 // Start the Kemet AI API server  // ... }

main(); expand_more

ุนุฑุถ ุงู„ู…ุณูˆุฏู‘ุงุช expand_more // ... (ุจุงู‚ูŠ ุงู„ู€ dependencies ุฒูŠ ู…ุง ู‡ูŠ) const { AutoModelForCausalLM, AutoTokenizer } = require('@xenova/transformers');

// ... (ุจุงู‚ูŠ ุงู„ูƒูˆุฏ ุฒูŠ ู…ุง ู‡ูˆ)

// 6. Model Definition and Training (Enhanced) async function trainModel() { const { tokenizer, model } = await loadModel(); // ุญู…ู„ ุงู„ู†ู…ูˆุฐุฌ ู…ู† Hugging Face

// ... (ุงุณุชุฎุฏู… ุงู„ู€ tokenizer ูˆุงู„ู€ model ููŠ ุชุฏุฑูŠุจ ุงู„ู†ู…ูˆุฐุฌ) }

// 8. Kemet AI API (Enhanced) async function answerQuestion(question, userId) { const { tokenizer, model } = await loadModel(); // ุญู…ู„ ุงู„ู†ู…ูˆุฐุฌ ู…ู† Hugging Face

// ... (ุงุณุชุฎุฏู… ุงู„ู€ tokenizer ูˆุงู„ู€ model ู„ุชูˆู„ูŠุฏ ุงู„ุฅุฌุงุจุฉ) }

// ุฏุงู„ุฉ ู…ุณุงุนุฏุฉ ู„ุชุญู…ูŠู„ ุงู„ู†ู…ูˆุฐุฌ ู…ู† Hugging Face async function loadModel() { const tokenizer = await AutoTokenizer.from_pretrained("your-username/your-model-name"); const model = await AutoModelForCausalLM.from_pretrained("your-username/your-model-name"); return { tokenizer, model }; }

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support