tmp

This model is a fine-tuned version of t-bank-ai/T-lite-instruct-0.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0736

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 3
  • training_steps: 20

Training results

Training Loss Epoch Step Validation Loss
1.0658 0.0002 1 1.0817
0.9432 0.0004 2 1.0814
1.1006 0.0006 3 1.0809
0.8838 0.0008 4 1.0801
1.1528 0.0010 5 1.0793
0.8889 0.0012 6 1.0786
1.1655 0.0014 7 1.0780
1.0079 0.0016 8 1.0774
1.1685 0.0018 9 1.0768
1.1659 0.0020 10 1.0763
1.1395 0.0022 11 1.0758
0.9426 0.0024 12 1.0753
0.9772 0.0026 13 1.0750
1.3758 0.0028 14 1.0746
0.7022 0.0030 15 1.0743
1.5761 0.0032 16 1.0741
1.2847 0.0034 17 1.0739
1.1528 0.0036 18 1.0737
0.8362 0.0038 19 1.0736
0.9096 0.0040 20 1.0736

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for DeGrimer/finetune_rag_t_lite

Adapter
(4)
this model

Dataset used to train DeGrimer/finetune_rag_t_lite