Pipeline generated with

import torch 
from diffusers import AutoencoderKL, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler, StableDiffusion3Pipeline
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, T5EncoderModel, CLIPTokenizer, AutoTokenizer


def get_dummy_components_sd3():
    torch.manual_seed(0)
    transformer = SD3Transformer2DModel(
        sample_size=32,
        patch_size=1,
        in_channels=8,
        num_layers=4,
        attention_head_dim=8,
        num_attention_heads=4,
        joint_attention_dim=32,
        caption_projection_dim=32,
        pooled_projection_dim=64,
        out_channels=8,
        qk_norm="rms_norm",
        dual_attention_layers=(0, 1),
    )

    torch.manual_seed(0)
    clip_text_encoder_config = CLIPTextConfig(
        bos_token_id=0,
        eos_token_id=2,
        hidden_size=32,
        intermediate_size=37,
        layer_norm_eps=1e-05,
        num_attention_heads=4,
        num_hidden_layers=5,
        pad_token_id=1,
        vocab_size=1000,
        hidden_act="gelu",
        projection_dim=32,
    )

    torch.manual_seed(0)
    text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)

    torch.manual_seed(0)
    text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)

    torch.manual_seed(0)
    text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

    tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
    tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
    tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

    torch.manual_seed(0)
    vae = AutoencoderKL(
        sample_size=32,
        in_channels=3,
        out_channels=3,
        block_out_channels=(4,),
        layers_per_block=1,
        latent_channels=8,
        norm_num_groups=1,
        use_quant_conv=False,
        use_post_quant_conv=False,
        shift_factor=0.0609,
        scaling_factor=1.5035,
    )

    scheduler = FlowMatchEulerDiscreteScheduler()

    return {
        "scheduler": scheduler,
        "text_encoder": text_encoder,
        "text_encoder_2": text_encoder_2,
        "text_encoder_3": text_encoder_3,
        "tokenizer": tokenizer,
        "tokenizer_2": tokenizer_2,
        "tokenizer_3": tokenizer_3,
        "transformer": transformer,
        "vae": vae,
    }


if __name__ == "__main__":
    components = get_dummy_components_sd3()
    pipeline = StableDiffusion3Pipeline(**components)
    pipeline.push_to_hub("DavyMorgan/tiny-sd35-pipe")
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.