BERT-hatespeech-classifier-900k
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5183
- Accuracy: 0.7498
- F1: 0.7481
- Precision: 0.7507
- Recall: 0.7498
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.5576 | 1.0 | 22519 | 0.5371 | 0.7384 | 0.7366 | 0.7392 | 0.7384 |
0.555 | 2.0 | 45038 | 0.5241 | 0.7470 | 0.7457 | 0.7474 | 0.7470 |
0.5368 | 3.0 | 67557 | 0.5199 | 0.7488 | 0.7473 | 0.7496 | 0.7488 |
0.535 | 4.0 | 90076 | 0.5194 | 0.7484 | 0.7465 | 0.7497 | 0.7484 |
0.5457 | 5.0 | 112595 | 0.5183 | 0.7498 | 0.7481 | 0.7507 | 0.7498 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu126
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Dauren-Nur/BERT-hatespeech-classifier-900k
Base model
google-bert/bert-base-uncased