Built with Axolotl

See axolotl config

axolotl version: 0.10.0.dev0

base_model: Dans-DiscountModels/mistral-7b-v0.3-DanChat
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

trust_remote_code:

# wandb configuration
wandb_project: 7b-m-dans-personalityengine
wandb_watch:

wandb_run_id: V1.3.0L-1-8 # V{Version}-{Run Number}-{Attempt Number}
wandb_log_model:

# push checkpoints to hub
hub_model_id: Dans-DiscountModels/7b-m-dans-personalityengine-v1.3.0L-TestArticle-1
# how to push checkpoints to hub
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy: "every_save"
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: true

# where to save the finished model to
output_dir: ./7b-m-dans-personalityengine

# where to save the dataset to
dataset_prepared_path: ./7b-m-dans-personalityengine-data

save_safetensors: true

# dataset settings (local or huggingface repo)
datasets:
  - path: Dans-DiscountModels/dpe-130l-m-7b-32k
    split: train
    ds_type: parquet
    type:

test_datasets:
  - path: Dans-DiscountModels/dpe-130l-m-7b-32k
    split: validation
    ds_type: parquet
    type:


plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true

load_in_8bit: false
load_in_4bit: false
strict: false

sequence_len: 32768

sample_packing: true
eval_sample_packing: true

pad_to_sequence_len: true

gradient_checkpointing: true
# gradient_checkpointing_kwargs:
# use_reentrant: false

gradient_accumulation_steps: 1
micro_batch_size: 4

num_epochs: 2

optimizer: ademamix_8bit
optim_args: "beta1=0.9,beta2=0.999,beta3=0.999,alpha=5"

lr_scheduler: rex
learning_rate: 0.000000012
cosine_min_lr_ratio: 0.1

# weight_decay: 0.03
max_grad_norm: 0.001

train_on_inputs: false
group_by_length: false

bf16: true
fp16: false
tf32: false

early_stopping_patience:

resume_from_checkpoint:
auto_resume_from_checkpoints: false

local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.05

evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens:

saves_per_epoch: 2
save_total_limit: 1

debug: false

deepspeed: deepspeed_configs/zero3_bf16.json

fsdp:
fsdp_config:

special_tokens:

7b-m-dans-personalityengine-v1.3.0L-TestArticle-1

This model is a fine-tuned version of Dans-DiscountModels/mistral-7b-v0.3-DanChat on the Dans-DiscountModels/dpe-130l-m-7b-32k dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5911

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.2e-08
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use ademamix_8bit and the args are: beta1=0.9,beta2=0.999,beta3=0.999,alpha=5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 47
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
1.4427 0.0021 1 1.5639
1.5781 0.1015 48 1.5631
1.462 0.2030 96 1.5590
1.6565 0.3044 144 1.5540
1.454 0.4059 192 1.5498
1.5414 0.5074 240 1.5471
1.6084 0.6089 288 1.5459
1.5315 0.7104 336 1.5457
1.4646 0.8118 384 1.5465
1.5506 0.9133 432 1.5482
1.5083 1.0148 480 1.5506
1.4986 1.1163 528 1.5538
1.4976 1.2178 576 1.5576
1.6139 1.3192 624 1.5618
1.6305 1.4207 672 1.5666
1.5522 1.5222 720 1.5717
1.5846 1.6237 768 1.5771
1.6093 1.7252 816 1.5824
1.6282 1.8266 864 1.5873
1.5984 1.9281 912 1.5911

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
7.25B params
Tensor type
F16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Dans-DiscountModels/7b-m-dans-personalityengine-v1.3.0L-TestArticle-1

Finetuned
(1)
this model