See axolotl config
axolotl version: 0.10.0.dev0
base_model: Dans-DiscountModels/mistral-7b-v0.3-DanChat
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code:
# wandb configuration
wandb_project: 7b-m-dans-personalityengine
wandb_watch:
wandb_run_id: V1.3.0L-1-8 # V{Version}-{Run Number}-{Attempt Number}
wandb_log_model:
# push checkpoints to hub
hub_model_id: Dans-DiscountModels/7b-m-dans-personalityengine-v1.3.0L-TestArticle-1
# how to push checkpoints to hub
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy: "every_save"
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: true
# where to save the finished model to
output_dir: ./7b-m-dans-personalityengine
# where to save the dataset to
dataset_prepared_path: ./7b-m-dans-personalityengine-data
save_safetensors: true
# dataset settings (local or huggingface repo)
datasets:
- path: Dans-DiscountModels/dpe-130l-m-7b-32k
split: train
ds_type: parquet
type:
test_datasets:
- path: Dans-DiscountModels/dpe-130l-m-7b-32k
split: validation
ds_type: parquet
type:
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
sequence_len: 32768
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
gradient_checkpointing: true
# gradient_checkpointing_kwargs:
# use_reentrant: false
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 2
optimizer: ademamix_8bit
optim_args: "beta1=0.9,beta2=0.999,beta3=0.999,alpha=5"
lr_scheduler: rex
learning_rate: 0.000000012
cosine_min_lr_ratio: 0.1
# weight_decay: 0.03
max_grad_norm: 0.001
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: false
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
save_total_limit: 1
debug: false
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
special_tokens:
7b-m-dans-personalityengine-v1.3.0L-TestArticle-1
This model is a fine-tuned version of Dans-DiscountModels/mistral-7b-v0.3-DanChat on the Dans-DiscountModels/dpe-130l-m-7b-32k dataset. It achieves the following results on the evaluation set:
- Loss: 1.5911
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.2e-08
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use ademamix_8bit and the args are: beta1=0.9,beta2=0.999,beta3=0.999,alpha=5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 47
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4427 | 0.0021 | 1 | 1.5639 |
1.5781 | 0.1015 | 48 | 1.5631 |
1.462 | 0.2030 | 96 | 1.5590 |
1.6565 | 0.3044 | 144 | 1.5540 |
1.454 | 0.4059 | 192 | 1.5498 |
1.5414 | 0.5074 | 240 | 1.5471 |
1.6084 | 0.6089 | 288 | 1.5459 |
1.5315 | 0.7104 | 336 | 1.5457 |
1.4646 | 0.8118 | 384 | 1.5465 |
1.5506 | 0.9133 | 432 | 1.5482 |
1.5083 | 1.0148 | 480 | 1.5506 |
1.4986 | 1.1163 | 528 | 1.5538 |
1.4976 | 1.2178 | 576 | 1.5576 |
1.6139 | 1.3192 | 624 | 1.5618 |
1.6305 | 1.4207 | 672 | 1.5666 |
1.5522 | 1.5222 | 720 | 1.5717 |
1.5846 | 1.6237 | 768 | 1.5771 |
1.6093 | 1.7252 | 816 | 1.5824 |
1.6282 | 1.8266 | 864 | 1.5873 |
1.5984 | 1.9281 | 912 | 1.5911 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Dans-DiscountModels/7b-m-dans-personalityengine-v1.3.0L-TestArticle-1
Base model
Dans-DiscountModels/mistral-7b-v0.3-DanChat