pollen-ner-1000

This model is a fine-tuned version of DeepPavlov/rubert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1692
  • Precision: 0.8204
  • Recall: 0.8768
  • F1: 0.8477

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
No log 1.0 63 0.1690 0.8075 0.8649 0.8352
No log 2.0 126 0.1692 0.8204 0.8768 0.8477
No log 3.0 189 0.1738 0.8147 0.8649 0.8391
No log 4.0 252 0.1721 0.8166 0.8649 0.8400
No log 5.0 315 0.1755 0.8 0.8626 0.8301

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for DanielNRU/pollen-ner-1000

Adapter
(41)
this model