Label-classifier / README.md
DaneNguyen's picture
End of training
b5db68f verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
model-index:
  - name: Label-classifier
    results: []

Label-classifier

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9972
  • Accuracy: 0.7284
  • Recall: 0.3681
  • Precision: 0.5257
  • F1 macro: 0.4064
  • F1 micro: 0.7284

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1 macro F1 micro
No log 1.0 81 0.8954 0.6852 0.2167 0.2380 0.1919 0.6852
No log 2.0 162 0.9831 0.6667 0.2552 0.4106 0.2485 0.6667
No log 3.0 243 0.9381 0.6728 0.3496 0.4541 0.3670 0.6728
No log 4.0 324 1.0068 0.7284 0.3501 0.5468 0.3915 0.7284
No log 5.0 405 0.9972 0.7284 0.3681 0.5257 0.4064 0.7284

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2