Daga2001's picture
Training complete with metrics
77e1c4e verified
|
raw
history blame
2.28 kB
metadata
license: cc-by-4.0
base_model: NazaGara/NER-fine-tuned-BETO
tags:
  - generated_from_trainer
datasets:
  - conll2002
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: beto-base-cased-finetuned-conll2002
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2002
          type: conll2002
          config: es
          split: validation
          args: es
        metrics:
          - name: Precision
            type: precision
            value: 0.8597014925373134
          - name: Recall
            type: recall
            value: 0.8602941176470589
          - name: F1
            type: f1
            value: 0.8599977029975882
          - name: Accuracy
            type: accuracy
            value: 0.978761597037205

beto-base-cased-finetuned-conll2002

This model is a fine-tuned version of NazaGara/NER-fine-tuned-BETO on the conll2002 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1259
  • Precision: 0.8597
  • Recall: 0.8603
  • F1: 0.8600
  • Accuracy: 0.9788

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0154 1.0 1041 0.1064 0.8523 0.8603 0.8563 0.9782
0.0162 2.0 2082 0.1060 0.8556 0.8635 0.8596 0.9790
0.0161 3.0 3123 0.1259 0.8597 0.8603 0.8600 0.9788

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1