|
--- |
|
license: apache-2.0 |
|
tags: |
|
- moe |
|
- frankenmoe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- CultriX/MonaTrix-v4 |
|
- mlabonne/OmniTruthyBeagle-7B-v0 |
|
- CultriX/MoNeuTrix-7B-v1 |
|
- paulml/OmniBeagleSquaredMBX-v3-7B |
|
base_model: |
|
- CultriX/MonaTrix-v4 |
|
- mlabonne/OmniTruthyBeagle-7B-v0 |
|
- CultriX/MoNeuTrix-7B-v1 |
|
- paulml/OmniBeagleSquaredMBX-v3-7B |
|
--- |
|
|
|
# NeuralMona_MoE-4x7B |
|
|
|
NeuralMona_MoE-4x7B is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [CultriX/MonaTrix-v4](https://huggingface.co/CultriX/MonaTrix-v4) |
|
* [mlabonne/OmniTruthyBeagle-7B-v0](https://huggingface.co/mlabonne/OmniTruthyBeagle-7B-v0) |
|
* [CultriX/MoNeuTrix-7B-v1](https://huggingface.co/CultriX/MoNeuTrix-7B-v1) |
|
* [paulml/OmniBeagleSquaredMBX-v3-7B](https://huggingface.co/paulml/OmniBeagleSquaredMBX-v3-7B) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
base_model: CultriX/MonaTrix-v4 |
|
dtype: bfloat16 |
|
experts: |
|
- source_model: "CultriX/MonaTrix-v4" # Historical Analysis, Geopolitics, and Economic Evaluation |
|
positive_prompts: |
|
- "Historic analysis" |
|
- "Geopolitical impacts" |
|
- "Evaluate significance" |
|
- "Predict impact" |
|
- "Assess consequences" |
|
- "Discuss implications" |
|
- "Explain geopolitical" |
|
- "Analyze historical" |
|
- "Examine economic" |
|
- "Evaluate role" |
|
- "Analyze importance" |
|
- "Discuss cultural impact" |
|
- "Discuss historical" |
|
negative_prompts: |
|
- "Compose" |
|
- "Translate" |
|
- "Debate" |
|
- "Solve math" |
|
- "Analyze data" |
|
- "Forecast" |
|
- "Predict" |
|
- "Process" |
|
- "Coding" |
|
- "Programming" |
|
- "Code" |
|
- "Datascience" |
|
- "Cryptography" |
|
|
|
- source_model: "mlabonne/OmniTruthyBeagle-7B-v0" # Multilingual Communication and Cultural Insights |
|
positive_prompts: |
|
- "Describe cultural" |
|
- "Explain in language" |
|
- "Translate" |
|
- "Compare cultural differences" |
|
- "Discuss cultural impact" |
|
- "Narrate in language" |
|
- "Explain impact on culture" |
|
- "Discuss national identity" |
|
- "Describe cultural significance" |
|
- "Narrate cultural" |
|
- "Discuss folklore" |
|
negative_prompts: |
|
- "Compose" |
|
- "Debate" |
|
- "Solve math" |
|
- "Analyze data" |
|
- "Forecast" |
|
- "Predict" |
|
- "Coding" |
|
- "Programming" |
|
- "Code" |
|
- "Datascience" |
|
- "Cryptography" |
|
|
|
- source_model: "CultriX/MoNeuTrix-7B-v1" # Problem Solving, Innovation, and Creative Thinking |
|
positive_prompts: |
|
- "Devise strategy" |
|
- "Imagine society" |
|
- "Invent device" |
|
- "Design concept" |
|
- "Propose theory" |
|
- "Reason math" |
|
- "Develop strategy" |
|
- "Invent" |
|
negative_prompts: |
|
- "Translate" |
|
- "Discuss" |
|
- "Debate" |
|
- "Summarize" |
|
- "Explain" |
|
- "Detail" |
|
- "Compose" |
|
|
|
- source_model: "paulml/OmniBeagleSquaredMBX-v3-7B" # Explaining Scientific Phenomena and Principles |
|
positive_prompts: |
|
- "Explain scientific" |
|
- "Discuss impact" |
|
- "Analyze potential" |
|
- "Elucidate significance" |
|
- "Summarize findings" |
|
- "Detail explanation" |
|
negative_prompts: |
|
- "Cultural significance" |
|
- "Engage in creative writing" |
|
- "Perform subjective judgment tasks" |
|
- "Discuss cultural traditions" |
|
- "Write review" |
|
- "Design" |
|
- "Create" |
|
- "Narrate" |
|
- "Discuss" |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "CultriX/NeuralMona_MoE-4x7B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |