Fatima 2023 Application

This project is about an image classification task of artificial and natural classes.

Setup:

pip install -r requirements.txt

Inference:

from torchvision import transforms
from PIL import Image
import torch


inference_transform = transforms.Compose([
    transforms.Resize(128),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
                         std=[0.2023, 0.1994, 0.2010]),
])

#load image and model
img_example = Image.open("image_example.png").convert('RGB')
print("image loaded!")
model_loaded = torch.load("fatima_challenge_model_exp3.pt")
model_loaded.eval()
print("model loaded!")


img_example_transformed = inference_transform(img_example)
out = model_loaded(img_example_transformed.to(torch.device("cuda:0")).unsqueeze(0)) # Generate predictions
_, outs = torch.max(out, 1)
prediction = "natural" if int(outs.cpu().numpy())==0 else "artificial"
print("prediction = ",prediction)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train CristianLazoQuispe/AIorNot-model