Swahili Gemma 1B - LiteRT
LiteRT (formerly TensorFlow Lite) optimized version of Swahili Gemma 1B - a fine-tuned Gemma 3 1B instruction model specialized for English-to-Swahili translation and Swahili conversational AI.
This repository contains MediaPipe task bundles optimized for mobile deployment on Android and iOS devices.
π Translation Performance
FLORES-200 Evaluation Results
Our Swahili Gemma 1B model demonstrates strong performance in English-to-Swahili translation:
Metric | Score | Ranking |
---|---|---|
BLEU | 27.6 | 4th out of 5 models |
chrF++ | 56.8 | 4th out of 5 models |
Model Comparison
Model | Parameters | BLEU | chrF++ | Efficiency* |
---|---|---|---|---|
Gemma 3 4B | 4B | 10.9 | 44.1 | 2.7 |
Swahili Gemma 1B | 1B | 27.6 | 56.8 | 27.6 |
Gemma 3 27B | 27B | 29.4 | 60.0 | 1.1 |
GPT-5 Mini | ~8B | 31.8 | 62.4 | 4.0 |
Gemini 2.0 Flash | Large | 35.6 | 64.6 | N/A |
*Efficiency = BLEU Score / Parameters (in billions)
Key Performance Insights
π― Efficiency Leader: Achieves the highest BLEU-to-parameter ratio (27.6 BLEU per billion parameters)
π Size Advantage: Outperforms Gemma 3 4B (4x larger) by 153% on BLEU score
π Competitive Quality: Achieves 94% of Gemma 3 27B performance with 27x fewer parameters
β‘ Practical Deployment: Runs efficiently on consumer hardware while maintaining quality
Evaluation Details
- Dataset: FLORES-200 EnglishβSwahili (1,012 translation pairs)
- Metrics: BLEU (bilingual evaluation understudy) and chrF++ (character F-score)
- Evaluation: Zero-shot translation performance
- Model: swahili-gemma-1b-it-33000 checkpoint
π± Available Models
File | Size | Quantization | Use Case |
---|---|---|---|
swahili-gemma-1b-fp16-instruct.task |
~1.0GB | FP16 | Recommended - Instruction following format with MediaPipe bundling |
swahili-gemma-1b-fp16-raw.tflite |
~1.0GB | FP16 | Raw TFLite model - requires custom tokenizer integration |
π Quick Start
Android (MediaPipe)
import com.google.mediapipe.tasks.genai.llminference.LlmInference
// Load the model
val options = LlmInference.LlmInferenceOptions.builder()
.setModelPath("/path/to/swahili-gemma-1b-fp16-instruct.task")
.build()
val llmInference = LlmInference.createFromOptions(context, options)
// Generate response
val response = llmInference.generateResponse("Translate to Swahili: Good morning")
println(response)
iOS (MediaPipe)
import MediaPipeTasksGenAI
// Load the model
let options = LlmInference.Options()
options.modelPath = "/path/to/swahili-gemma-1b-fp16-instruct.task"
let llmInference = try LlmInference(options: options)
// Generate response
let response = try llmInference.generateResponse(inputText: "Translate to Swahili: Good morning")
print(response)
Web (MediaPipe)
import { LlmInference } from '@mediapipe/tasks-genai';
const llm = await LlmInference.createFromModelPath(
'/path/to/swahili-gemma-1b-fp16-instruct.task'
);
const response = await llm.generateResponse('Translate to Swahili: Good morning');
console.log(response);
π Language Capabilities
- Input Languages: English + Swahili
- Output Language: Swahili only
- Primary Focus: English-to-Swahili translation and Swahili conversation
π Performance Metrics
Translation Quality (BLEU Scores)
Model | BLEU Score | chrF++ |
---|---|---|
π₯ Swahili Gemma 1B | 23.64 | 52.26 |
π₯ ChatGPT-4o-latest | [TBD] | [TBD] |
π₯ Other Models | [TBD] | [TBD] |
Evaluated on 1,012 English-to-Swahili translation samples.
π¦ Model Variants Guide
1. swahili-gemma-1b-fp16-instruct.task
(RECOMMENDED)
Best for: Most mobile applications - ready-to-use MediaPipe bundle
Input format: Natural instructions
Translate to Swahili: Hello, how are you?
MediaPipe formats as:
### Instruction:
Translate to Swahili: Hello, how are you?
### Response:
2. swahili-gemma-1b-fp16-raw.tflite
Best for: Custom integrations requiring direct TFLite model access
Requirements: You need to handle tokenization manually Use case: Advanced users who want to integrate with custom tokenizers or frameworks
π― Capabilities
- Translation: English-to-Swahili translation
- Conversational AI: Natural dialogue in Swahili
- Summarization: Text summarization in Swahili
- Writing: Creative and informational writing in Swahili
- Question Answering: General knowledge responses in Swahili
π‘ Generation Parameters
Optimal settings for mobile deployment:
// JavaScript/Web
const response = await llm.generateResponse(prompt, {
temperature: 0.3,
topK: 40,
randomSeed: 42
});
// Android
val response = llmInference.generateResponse(
inputText = prompt,
temperature = 0.3f,
topK = 40,
randomSeed = 42
)
// iOS
let options = LlmInference.Options()
options.temperature = 0.3
options.topK = 40
options.randomSeed = 42
let response = try llmInference.generateResponse(
inputText: prompt,
options: options
)
π± Mobile Integration
Memory Requirements
- RAM: Minimum 3GB recommended for optimal performance
- Storage: ~1.2GB per task bundle
- CPU: ARMv8 or newer recommended
Performance Tips
- Preload models during app initialization
- Use appropriate quantization: FP16 provides good quality for mobile
- Cache responses for repeated queries
- Batch processing for multiple translations
π Related Models
- Original Model: CraneAILabs/swahili-gemma-1b - Full precision HuggingFace model
- GGUF Quantizations: CraneAILabs/swahili-gemma-1b-GGUF - Optimized for llama.cpp/Ollama
- Ollama: crane-ai-labs/swahili-gemma-1b - Ready-to-run with Ollama
π¨ Use Cases
- Mobile Translation Apps: Offline English-Swahili translation
- Language Learning: Practice Swahili with instant feedback
- Cultural Apps: Create culturally aware Swahili content
- Educational Tools: Swahili learning assistants for mobile
- Offline AI: No internet required after model download
- Edge Computing: Run AI locally on mobile devices
β οΈ Limitations
- Language Output: Responds only in Swahili
- Mobile Resources: Requires significant RAM and storage
- Context Length: Optimized for shorter inputs on mobile
- Quantization: FP16 requires more memory than INT4/INT8
- Platform Support: Requires MediaPipe Tasks GenAI support
π οΈ Development Setup
Android
dependencies {
implementation 'com.google.mediapipe:tasks-genai:latest.release'
}
iOS
// Add to Package.swift
.package(url: "https://github.com/google/mediapipe", from: "0.10.0")
Web
npm install @mediapipe/tasks-genai
π License
This model is released under the Gemma Terms of Use. Please review the terms before use.
π Acknowledgments
- Google: For the Gemma 3 base model, support and guidance.
- Community: For Swahili language resources and datasets
- Gilbert Korir (Msingi AI, Nairobi, Kenya)
- Alfred Malengo Kondoro (Hanyang University, Seoul, South Korea)
Citation
If you use these LiteRT models in your research or mobile applications, please cite:
@misc{crane_ai_labs_2025,
author = {Bakunga Bronson and Kato Steven Mubiru and Lwanga Caleb and Gimei Alex and Kavuma Lameck and Roland Ganafa and Sibomana Glorry and Atuhaire Collins and JohnRoy Nangeso and Tukamushaba Catherine},
title = {Swahili Gemma: A Fine-tuned Gemma 3 1B Model for Swahili conversational AI},
year = {2025},
url = {https://huggingface.co/CraneAILabs/swahili-gemma-1b},
organization = {Crane AI Labs}
}
Built with β€οΈ by Crane AI Labs
Swahili Gemma - Your helpful Swahili AI companion, now on mobile!
- Downloads last month
- 20
Model tree for CraneAILabs/swahili-gemma-1b-litert
Base model
google/gemma-3-1b-pt