|
--- |
|
base_model: UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3 |
|
datasets: |
|
- openbmb/UltraFeedback |
|
language: |
|
- en |
|
license: apache-2.0 |
|
pipeline_tag: text-generation |
|
tags: |
|
- autoquant |
|
- UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3 |
|
- gptq |
|
--- |
|
Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675) |
|
|
|
# Mistral7B-PairRM-SPPO-Iter3 |
|
|
|
This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 3, based on the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic. |
|
|
|
**This is the model reported in the paper** , with K=5 (generate 5 responses per iteration). We attached the Arena-Hard eval results in this model page. |
|
|
|
## Links to Other Models |
|
- [Mistral7B-PairRM-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter1) |
|
- [Mistral7B-PairRM-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter2) |
|
- [Mistral7B-PairRM-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3) |
|
- [Mistral7B-PairRM-SPPO](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO) |
|
|
|
|
|
|
|
### Model Description |
|
|
|
- Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets. |
|
- Language(s) (NLP): Primarily English |
|
- License: Apache-2.0 |
|
- Finetuned from model: mistralai/Mistral-7B-Instruct-v0.2 |
|
|
|
|
|
## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/) |
|
|
|
|
|
| Model | LC. Win Rate | Win Rate | Avg. Length | |
|
|-------------------------------------------|:------------:|:--------:|:-----------:| |
|
| Mistral7B-PairRM-SPPO Iter 1 | 24.79 | 23.51 | 1855 | |
|
| Mistral7B-PairRM-SPPO Iter 2 | 26.89 | 27.62 | 2019 | |
|
| Mistral7B-PairRM-SPPO Iter 3 | 28.53 | 31.02 | 2163 | |
|
| Mistral7B-PairRM-SPPO Iter 1 (best-of-16) | 28.71 | 27.77 | 1901 | |
|
| Mistral7B-PairRM-SPPO Iter 2 (best-of-16) | 31.23 | 32.12 | 2035 | |
|
| Mistral7B-PairRM-SPPO Iter 3 (best-of-16) | 32.13 | 34.94 | 2174 | |
|
|
|
## [Arena-Hard Evaluation Results](https://github.com/lm-sys/arena-hard) |
|
|
|
Model | Score | 95% CI | average \# Tokens | |
|
|----------|-----------|--------------|-----------| |
|
Mistral7B-PairRM-SPPO-Iter3| 23.3 | (-1.8, 1.8)|578| |
|
|
|
## [Open LLM Leaderboard Evaluation Results](https://github.com/EleutherAI/lm-evaluation-harness) |
|
|
|
Results are reported by using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) v0.4.1 |
|
|
|
| | arc_challenge | truthfulqa_mc2 | winogrande | gsm8k | hellaswag | mmlu | average | |
|
|--------|---------------|----------------|------------|-------|-----------|-------|---------| |
|
| Mistral7B-PairRM-SPPO Iter 1 | 65.02 | 69.4 | 77.82 | 43.82 | 85.11 | 58.84 | 66.67 | |
|
| Mistral7B-PairRM-SPPO Iter 2 | 65.53 | 69.55 | 77.03 | 44.35 | 85.29 | 58.72 | 66.75 | |
|
| Mistral7B-PairRM-SPPO Iter 3 | 65.36 | 69.97 | 76.8 | 42.68 | 85.16 | 58.45 | 66.4 | |
|
## [MT-Bench Evaluation Results](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) |
|
|
|
| | 1st Turn | 2nd Turn | Average | |
|
|--------|----------|----------|---------| |
|
| Mistral7B-PairRM-SPPO Iter 1 | 7.63 | 6.79 | 7.21 | |
|
| Mistral7B-PairRM-SPPO Iter 2 | 7.90 | 7.08 | 7.49 | |
|
| Mistral7B-PairRM-SPPO Iter 3 | 7.84 | 7.34 | 7.59 | |
|
|
|
### Training hyperparameters |
|
The following hyperparameters were used during training: |
|
|
|
- learning_rate: 5e-07 |
|
- eta: 1000 |
|
- per_device_train_batch_size: 8 |
|
- gradient_accumulation_steps: 1 |
|
- seed: 42 |
|
- distributed_type: deepspeed_zero3 |
|
- num_devices: 8 |
|
- optimizer: RMSProp |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_train_epochs: 18.0 (stop at epoch=1.0) |
|
|
|
|
|
|
|
|
|
## Citation |
|
``` |
|
@misc{wu2024self, |
|
title={Self-Play Preference Optimization for Language Model Alignment}, |
|
author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan}, |
|
year={2024}, |
|
eprint={2405.00675}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |