Edit model card

Fine-tuning

  • Base Model: NousResearch/Llama-2-7b-hf
  • Dataset for fine-tuning: vicgalle/alpaca-gpt4
  • Training
    • BitsAndBytesConfig
      BitsAndBytesConfig(
          load_in_4bit= True,
          bnb_4bit_quant_type= "nf4",
          bnb_4bit_compute_dtype= torch.bfloat16,
          bnb_4bit_use_double_quant= False,
      )
      
    • LoRA Config
      LoraConfig(
          r=16,
          lora_alpha= 8, # alpha = rank * 2 !
          lora_dropout= 0.1,
          bias="none",
          task_type="CAUSAL_LM",
          target_modules=["q_proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj"]
      )
      
    • Training Arguments
      TrainingArguments(
          output_dir= "./results",
          num_train_epochs= 1,
          per_device_train_batch_size= 8,
          gradient_accumulation_steps= 2,
          optim = "paged_adamw_8bit",
          save_steps= 1000,
          logging_steps= 30,
          learning_rate= 2e-4,
          weight_decay= 0.001,
          fp16= False,
          bf16= False,
          max_grad_norm= 0.3,
          max_steps= -1,
          warmup_ratio= 0.3,
          group_by_length= True,
          lr_scheduler_type= "linear",
          report_to="wandb",
      )
      
Downloads last month
14
Safetensors
Model size
6.74B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Copycats/Llama-2-7b-hf_alpacaGPT4-qlora