|
--- |
|
language: en |
|
license: apache-2.0 |
|
--- |
|
|
|
# CodeRosetta |
|
## Pushing the Boundaries of Unsupervised Code Translation for Parallel Programming ([📃Paper](https://arxiv.org/abs/2410.20527), [🔗Website](https://coderosetta.com/)). |
|
|
|
|
|
CodeRosetta is an EncoderDecoder translation model. It supports the translation of C++, CUDA, and Fortran. \ |
|
This version of the model is fine-tuned on [HPC_Fortran_CPP](https://huggingface.co/datasets/HPC-Forran2Cpp/HPC_Fortran_CPP) dataset for **Fortran to C++ translation.** |
|
|
|
### How to use |
|
|
|
```python |
|
from transformers import AutoTokenizer, EncoderDecoderModel |
|
|
|
# Load the CodeRosetta model and tokenizer |
|
model = EncoderDecoderModel.from_pretrained('CodeRosetta/CodeRosetta_fortran2cpp_ft') |
|
tokenizer = AutoTokenizer.from_pretrained('CodeRosetta/CodeRosetta_fortran2cpp_ft') |
|
|
|
# Encode the input Fortran Code |
|
input_fortran_code = "program DRB047_doallchar_orig_no\n use omp_lib\n implicit none\n\n character(len=100), dimension(:), allocatable :: a\n character(50) :: str\n integer :: i\n\n allocate (a(100))\n\n !$omp parallel do private(str)\n do i = 1, 100\n write( str, '(i10)' ) i\n a(i) = str\n end do\n !$omp end parallel do\n\n print*,'a(i)',a(23)\nend program" |
|
input_ids = tokenizer.encode(input_fortran_code, return_tensors="pt") |
|
|
|
# Set the start token to <CPP> |
|
start_token = "<CPP>" |
|
decoder_start_token_id = tokenizer.convert_tokens_to_ids(start_token) |
|
|
|
# Generate the C++ code |
|
output = model.generate( |
|
input_ids=input_ids, |
|
decoder_start_token_id=decoder_start_token_id, |
|
max_length=256 |
|
) |
|
|
|
# Decode and print the generated output |
|
generated_code = tokenizer.decode(output[0], skip_special_tokens=True) |
|
print(generated_code) |
|
``` |
|
|
|
### BibTeX |
|
|
|
```bibtex |
|
@inproceedings{coderosetta:neurips:2024, |
|
title = {CodeRosetta: Pushing the Boundaries of Unsupervised Code Translation for Parallel Programming}, |
|
author = {TehraniJamsaz, Ali and Bhattacharjee, Arijit and Chen, Le and Ahmed, Nesreen K and Yazdanbakhsh, Amir and Jannesari, Ali}, |
|
booktitle = {NeurIPS}, |
|
year = {2024}, |
|
} |
|
|