SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-0.6B on the massive_triplet_v3 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-Embedding-0.6B
- Maximum Sequence Length: 32768 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False}) with Transformer model: Qwen3Model
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("CocoRoF/POLAR-Qwen3-0.6b-linq-gist")
# Run inference
sentences = [
'create list of spiders that obeys the visible projects list, through use of the spider selection menu',
"def create_spiders_list():\n spiders_lst = [obj for obj in globals().values() if\n inspect.isclass(obj) and str(obj).split('.')[2] == 'spiders' and 'BaseSpider' not in str(obj)]\n visible_projects = find_visible_projects()\n spiders_dict = {i.split('.')[0]: [obj for obj in spiders_lst if i.split('.')[0] in str(obj)] for i in\n os.listdir('HousingPriceScraper/HousingPriceScraper/spiders/SpiderGroups')[:-1] if i.split('.')[0] in visible_projects}\n if len(list(spiders_dict.keys())) > 0:\n spiders_lst = select_spiders(spiders_dict)\n else:\n print('There are no visible projects, got to set_visible_projects to set defaults')\n return False\n return spiders_lst",
'def instantiate_pipelines(settings, simulator_settings):\n pipelines = []\n # lock to manage race parallel processes race conditions \n lock = Lock()\n\n logger.info("\\nVALIDATING PIPELINES\\n")\n for p_idx, pipeline_settings in enumerate(settings.runs):\n\n # turn a pipeline off by specifying num_runs as 0\n num_runs = pipeline_settings.get("num_runs", 0)\n\n # start_idx determines the first dataset name\'s starting idx\n start_idx = pipeline_settings.get("start_idx", 0)\n\n if num_runs:\n logger.info("Validating run: {}\\n".format(p_idx))\n else:\n logger.info("Skipping run: {}\\n".format(p_idx))\n \n for idx in range(start_idx, start_idx + num_runs): \n logger.info("Pipeline sub index: {}\\n".format(idx))\n # class factory and instantiate pipeline object\n Pipeline = pipeline_factory(pipeline_settings["pipeline_name"])\n p = Pipeline(pipeline_settings, idx, simulator_settings)\n \n # give each pipeline an idependent logger\n log_name = "dSim_{}".format(p.pipeline_settings["dataset_name"])\n log_path = os.path.join(p.pipeline_settings["outdir"],\n p.pipeline_settings["dataset_name"]+\'.log\')\n fh = logging.FileHandler(log_path, mode=\'w\')\n fh.setLevel(logging.DEBUG)\n format = "%(asctime)-6s: %(name)s - %(levelname)s - %(message)s"\n fmt = logging.Formatter(format)\n fh.setFormatter(fmt)\n local_logger = logging.getLogger(log_name)\n local_logger.addHandler(fh)\n logger.info("Init local logging: {}".format(log_path))\n p.logger = local_logger\n\n # pipeline/ dataset directory\n p.pipeline_settings["lock"] = lock\n\n # validate all submodules for each pipeline is ready (use local logger) \n p.instantiate_modules()\n\n # append to list of instantiated pipelines\n pipelines.append(p)\n return pipelines',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
massive_triplet_v3
- Dataset: massive_triplet_v3 at 51266de
- Size: 500,000 training samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 6 tokens
- mean: 22.57 tokens
- max: 67 tokens
- min: 8 tokens
- mean: 132.85 tokens
- max: 1160 tokens
- min: 4 tokens
- mean: 122.89 tokens
- max: 1758 tokens
- Samples:
query positive negative 방학기간에 소외지역의 청소년을 대상으로 청춘누리 봉사단이 할 수 있는 캠프의 이름은 뭐야
주요 수상기관 교육기부프로그램 개요
4. 대학생 동아리 「청춘누리 봉사단」
□ 청춘누리축제
◦ (참가대상) 전국 유치원, 초·중·고등학생
◦ (활동내역) 대학생들이 운영하는 교육기부활동을 청소년들이 직접 체험해봄으로써 학생들이 사고력, 창의력 향상을 도모하고 자신의 꿈을 펼칠 수 있는 장 마련
◦ (주요성과) 대학생들의 교육기부에 대한 전반적인 이해를 돕고 교육 기부 활동의 우수성 홍보
□ 청춘누리봉사단과 함께하는 교육기부(쏙쏙캠프, 함성소리)
◦ (참가대상) 전국의 초·중학생
◦ (활동내역)
- 쏙쏙캠프 : 방학을 이용하여 상대적으로 교육기부 혜택이 적은 소외 지역을 방문하여 창의력 체험, 진로체험 등을 제공, 배움의 기회 균등 및 꿈을 찾아주는 활동 전개
- 함성소리 : 학기중 토요일마다 수도권에 있는 청소년 대상으로 꿈을 설계하고 지원하는 활동 전개
◦ (주요성과) 소외지역 청소년 대상 배움의 기회를 제공하고 대학생들의 봉사활동을 장려하여 많은 청소년 대상 멘토 활동 전개개도국에 IT나눔을 실천한 청년들과 아름다운 동행
□ 미래창조과학부(장관 최문기)와 한국정보화진흥원(원장 장광수)은 12월 18일(수) 오후 2시 10분 과천과학관에서 「2013년도 월드프렌즈 IT봉사단 귀국보고대회」(이하, IT봉사단 귀국보고대회)를 개최하였다.
o 정부는 2001년부터 현재까지 전 세계 70여개 개도국에 5,158명의 IT봉사단을 파견한 바 있으며, 「IT봉사단 귀국보고대회」는 매년 개도국에서 활동하고 온 봉사단원들이 서로의 경험을 공유하고 글로벌 역량을 배양하는 ‘소통'과 ‘협력‘의 장(場)으로 운영되고 있다.
※ 월드프렌즈(World Frends Korea, WFK) : 우리나라 해외봉사단사업 통합브랜드
□ 이번 「IT봉사단 귀국보고대회」에는 30개국에 파견되었던 552명의 봉사단원 중 약 300여명의 봉사단원이 참석했으며, 윤종록 제2차관과 주한 외교사절(인도네시아 대사, 코스타리카 대사, 네팔 대사 등)이 참석해 세계의 오지를 누비고 온 봉사단원들을 격려했다.
o 윤종록 제2차관은 IT봉사단원들에게“귀한경험을 활용하여 대한민국의 이름을 빛내는 사람이 되기를 바란다”는 당부와 함께“정부는 여러분과 같은 젊은이들이 세계를 무대로 능력을 마음껏 발휘할 수 있는 글로벌 플랫폼을 구축하는데 노력할 계획”이라고 덧붙였다.Loads sensor filters from an Excel file. Both new style XLSX and oldstyle XLS formats are supported.
def load_sensor_filters_excel(filename, normalise=False, sheet_names=None):
sensor_filters = {}
with pd.ExcelFile(filename) as excel_file:
# default is all sheets
if not sheet_names:
sheet_names = excel_file.sheet_names
for sheet in sheet_names:
try:
dataframe = excel_file.parse(
sheet, index_col=0
) # the sheet as a DataFrame
# OK, we have the data frame. Let's process it...
if not _validate_filter_dataframe(dataframe):
continue
if normalise:
dataframe = _normalise_dataframe(dataframe)
sensor_filters[sheet] = (
np.array(dataframe.index),
dataframe.values.transpose(),
)
except xlrd.biffh.XLRDError:
continue
# except xlrd.biffh.XLRDError as xlrd_error:
# TODO: log wa...def convert_csv(fname):
# Make sure this is an Excel file.
if (not is_excel_file(fname)):
# Not Excel, so no sheets.
return []
# Run soffice in listening mode if it is not already running.
run_soffice()
# TODO: Make sure soffice is running in listening mode.
#
# Connect to the local LibreOffice server.
context = connect(Socket(HOST, PORT))
# Load the Excel sheet.
component = get_component(fname, context)
# Iterate on all the sheets in the spreadsheet.
controller = component.getCurrentController()
sheets = component.getSheets()
enumeration = sheets.createEnumeration()
r = []
pos = 0
if sheets.getCount() > 0:
while enumeration.hasMoreElements():
# Move to next sheet.
sheet = enumeration.nextElement()
name = sheet.getName()
if (name.count(" ") > 10):
name = name.replace(" ", "")
name = fix_file_name(name)
...Create an additional feature to metadata by counting number of occurrences in data, for a specific element_type
def create_count_features(metadata, element_type, data, grp_feat, res_feat, feature_suffix):
feature_name = 'n_'+ element_type + '_modif' + feature_suffix
newfeature = (data.groupby([grp_feat])[res_feat]
.count()
.reset_index()
.fillna(0))
newfeature.columns = [grp_feat, feature_name]
metadata = pd.merge(metadata, newfeature, on=grp_feat, how="outer").fillna(0)
return metadatadef test(self):
count = Counter()
for example in self.testing_set:
classification = self.classify(example.attributes)
if example.CLASS and classification:
count['TP'] += 1
elif not example.CLASS and classification:
count['FP'] += 1
elif not example.CLASS and not classification:
count['TN'] += 1
elif example.CLASS and not classification:
count['FN'] += 1
return count - Loss:
CachedGISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 40960, 'do_lower_case': False}) with Transformer model: Qwen3Model (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01}
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 16learning_rate
: 2e-06weight_decay
: 0.01adam_beta2
: 0.99adam_epsilon
: 1e-07max_grad_norm
: 0.3num_train_epochs
: 1.0warmup_ratio
: 0.1dataloader_num_workers
: 16hub_model_id
: CocoRoF/POLAR-Qwen3-0.6b-linq-gistprompts
: ({'query': 'Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:', 'document': ''},)batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Truedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-06weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.99adam_epsilon
: 1e-07max_grad_norm
: 0.3num_train_epochs
: 1.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 16dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: CocoRoF/POLAR-Qwen3-0.6b-linq-gisthub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: ({'query': 'Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:', 'document': ''},)batch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0082 | 1 | 2.0699 |
0.0164 | 2 | 1.7826 |
0.0246 | 3 | 1.9799 |
0.0328 | 4 | 8.1569 |
0.0410 | 5 | 4.641 |
0.0492 | 6 | 4.847 |
0.0573 | 7 | 8.2247 |
0.0655 | 8 | 8.9525 |
0.0737 | 9 | 4.2975 |
0.0819 | 10 | 6.3088 |
0.0901 | 11 | 5.6983 |
0.0983 | 12 | 4.3867 |
0.1065 | 13 | 6.1817 |
0.1147 | 14 | 6.0226 |
0.1229 | 15 | 15.2869 |
0.1311 | 16 | 11.8965 |
0.1393 | 17 | 9.4219 |
0.1475 | 18 | 5.9216 |
0.1557 | 19 | 6.5436 |
0.1639 | 20 | 5.4599 |
0.1720 | 21 | 4.6468 |
0.1802 | 22 | 4.9366 |
0.1884 | 23 | 4.5267 |
0.1966 | 24 | 4.9044 |
0.2048 | 25 | 4.9682 |
0.2130 | 26 | 4.1537 |
0.2212 | 27 | 4.0729 |
0.2294 | 28 | 3.9093 |
0.2376 | 29 | 3.3863 |
0.2458 | 30 | 3.9228 |
0.2540 | 31 | 2.8689 |
0.2622 | 32 | 3.3243 |
0.2704 | 33 | 2.7494 |
0.2785 | 34 | 3.108 |
0.2867 | 35 | 3.1585 |
0.2949 | 36 | 3.2985 |
0.3031 | 37 | 2.7137 |
0.3113 | 38 | 2.8327 |
0.3195 | 39 | 2.7932 |
0.3277 | 40 | 3.038 |
0.3359 | 41 | 2.769 |
0.3441 | 42 | 2.7036 |
0.3523 | 43 | 3.1873 |
0.3605 | 44 | 2.5984 |
0.3687 | 45 | 2.6836 |
0.3769 | 46 | 3.0616 |
0.3850 | 47 | 2.87 |
0.3932 | 48 | 2.5225 |
0.4014 | 49 | 2.3775 |
0.4096 | 50 | 2.3407 |
0.4178 | 51 | 2.6313 |
0.4260 | 52 | 2.6966 |
0.4342 | 53 | 2.3673 |
0.4424 | 54 | 2.4391 |
0.4506 | 55 | 2.5654 |
0.4588 | 56 | 2.2967 |
0.4670 | 57 | 2.4656 |
0.4752 | 58 | 2.2497 |
0.4834 | 59 | 2.3793 |
0.4916 | 60 | 2.4427 |
0.4997 | 61 | 2.2327 |
0.5079 | 62 | 2.04 |
0.5161 | 63 | 2.2881 |
0.5243 | 64 | 2.0218 |
0.5325 | 65 | 2.3258 |
0.5407 | 66 | 2.1217 |
0.5489 | 67 | 1.9639 |
0.5571 | 68 | 2.1681 |
0.5653 | 69 | 2.1941 |
0.5735 | 70 | 2.1217 |
0.5817 | 71 | 2.1097 |
0.5899 | 72 | 2.1242 |
0.5981 | 73 | 1.9071 |
0.6062 | 74 | 1.8552 |
0.6144 | 75 | 1.8398 |
0.6226 | 76 | 1.9429 |
0.6308 | 77 | 1.6457 |
0.6390 | 78 | 1.656 |
0.6472 | 79 | 1.6597 |
0.6554 | 80 | 1.8188 |
0.6636 | 81 | 2.0348 |
0.6718 | 82 | 1.9511 |
0.6800 | 83 | 1.8009 |
0.6882 | 84 | 1.8279 |
0.6964 | 85 | 1.7993 |
0.7046 | 86 | 1.782 |
0.7127 | 87 | 1.6168 |
0.7209 | 88 | 1.7357 |
0.7291 | 89 | 1.5588 |
0.7373 | 90 | 1.6574 |
0.7455 | 91 | 1.7124 |
0.7537 | 92 | 1.7205 |
0.7619 | 93 | 1.7439 |
0.7701 | 94 | 1.4042 |
0.7783 | 95 | 1.547 |
0.7865 | 96 | 1.5815 |
0.7947 | 97 | 1.4141 |
0.8029 | 98 | 1.3568 |
0.8111 | 99 | 1.5084 |
0.8193 | 100 | 1.4027 |
0.8274 | 101 | 1.4902 |
0.8356 | 102 | 1.317 |
0.8438 | 103 | 1.8041 |
0.8520 | 104 | 1.4397 |
0.8602 | 105 | 1.3406 |
0.8684 | 106 | 1.5127 |
0.8766 | 107 | 1.2449 |
0.8848 | 108 | 1.4508 |
0.8930 | 109 | 1.4171 |
0.9012 | 110 | 1.626 |
0.9094 | 111 | 1.285 |
0.9176 | 112 | 1.2682 |
0.9258 | 113 | 1.5178 |
0.9339 | 114 | 1.3686 |
0.9421 | 115 | 1.227 |
0.9503 | 116 | 1.3685 |
0.9585 | 117 | 1.3253 |
0.9667 | 118 | 1.0893 |
0.9749 | 119 | 1.1753 |
0.9831 | 120 | 1.252 |
0.9913 | 121 | 1.2304 |
0.9995 | 122 | 1.1111 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 70
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support