Edit model card

scibert_prefix_cont_ll_SEP

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0769
  • F1 Weighted: 0.9112
  • F1 Samples: 0.9155
  • F1 Macro: 0.8184
  • F1 Micro: 0.9121
  • Accuracy: 0.8863

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Weighted F1 Samples F1 Macro F1 Micro Accuracy
0.2213 0.3381 500 0.1392 0.8151 0.8223 0.6081 0.8355 0.8018
0.1377 0.6761 1000 0.1129 0.8523 0.8584 0.6889 0.8645 0.8342
0.1214 1.0142 1500 0.1103 0.8504 0.8552 0.6955 0.8613 0.8302
0.0921 1.3523 2000 0.0961 0.8656 0.8655 0.7111 0.8740 0.8390
0.0863 1.6903 2500 0.0900 0.8789 0.8810 0.7281 0.8847 0.8545
0.0825 2.0284 3000 0.0959 0.8764 0.8844 0.7323 0.8826 0.8532
0.0567 2.3665 3500 0.0856 0.8879 0.8951 0.7454 0.8922 0.8633
0.061 2.7045 4000 0.0952 0.8802 0.8827 0.7397 0.8856 0.8586
0.0532 3.0426 4500 0.0839 0.8979 0.9058 0.7639 0.9031 0.8775
0.0361 3.3807 5000 0.0831 0.9007 0.9113 0.7791 0.9045 0.8769
0.0369 3.7187 5500 0.0833 0.9018 0.9094 0.7880 0.9031 0.8775
0.0392 4.0568 6000 0.0826 0.9062 0.9108 0.8180 0.9081 0.8823
0.027 4.3949 6500 0.0769 0.9112 0.9155 0.8184 0.9121 0.8863
0.0251 4.7329 7000 0.0868 0.8996 0.9061 0.7693 0.9018 0.8714
0.0255 5.0710 7500 0.0867 0.9083 0.9147 0.8048 0.9115 0.8870
0.0212 5.4091 8000 0.0834 0.9100 0.9161 0.8209 0.9116 0.8850

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ClementineBleuze/scibert_prefix_cont_ll_SEP

Finetuned
(50)
this model