This model is for typos in texts and it outputs corrected texts.

Example:

Text with Typos: Whathvhr wh call owr carhaivhrs - doctors, nwrsh practitionhrs, clinicians, - wh nhhd thhm not only to carh, wh nhhd thhm to uh aulh to providh thh riaht valwh.

Corrected Text: Whatever we call our caregivers - doctors, nurse practitioners, clinicians, - we need them not only to care, we need them to be able to provide the right value.

Example Usage:

#Load the model and tokenizer
text = "" #Text with typos here!
inputs = tokenizer(cipher_text, return_tensors="pt", padding=True, truncation=True, max_length=256).to(device)
outputs = model.generate(inputs["input_ids"], max_length=256)
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
Downloads last month
123
Safetensors
Model size
223M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Cipher-AI/AutoCorrect-EN

Base model

google-t5/t5-base
Finetuned
(474)
this model
Quantizations
1 model

Dataset used to train Cipher-AI/AutoCorrect-EN