See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c94b42aa607ca133_train_data.json
ds_type: json
field: prompt
path: /workspace/input_data/
split: train
type: completion
ddp_find_unused_parameters: false
debug: null
deepspeed: null
early_stopping_patience: null
ema_decay: 0.995
ema_update_after_step: 200
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
greater_is_better: false
group_by_length: false
hub_model_id: CheapsetZero/cbe7acef-a938-46c7-ace1-c90867666d7a
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_nan_inf_filter: true
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 24480
metric_for_best_model: eval_loss
micro_batch_size: 16
min_lr: 1.0e-05
mlflow_experiment_name: /tmp/c94b42aa607ca133_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
reward_model_sampling_temperature: 0.7
s2_attention: null
sample_packing: false
save_total_limit: 3
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trl:
beta: 0.15
max_completion_length: 1024
num_generations: 16
reward_funcs:
- rewards_bfed963f-9793-430e-bd1a-794f2796a80a.reward_high_difficult_words_percentage
- rewards_bfed963f-9793-430e-bd1a-794f2796a80a.reward_long_words
- rewards_bfed963f-9793-430e-bd1a-794f2796a80a.reward_specific_char_count
- rewards_bfed963f-9793-430e-bd1a-794f2796a80a.reward_high_syllables_per_word
- rewards_bfed963f-9793-430e-bd1a-794f2796a80a.reward_low_difficult_words_percentage
reward_weights:
- 2.949217700838369
- 2.0142563327314766
- 3.521368162265653
- 0.8013850114876064
- 4.078102717633659
use_vllm: false
trust_remote_code: true
use_ema: true
use_peft: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: offline
wandb_name: bfed963f-9793-430e-bd1a-794f2796a80a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: bfed963f-9793-430e-bd1a-794f2796a80a
warmup_steps: 1224
weight_decay: 0.01
xformers_attention: null
cbe7acef-a938-46c7-ace1-c90867666d7a
This model is a fine-tuned version of unsloth/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1224
- training_steps: 9977
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0 | 0.0003 | 1 | nan |
0.0 | 0.2502 | 832 | nan |
0.0 | 0.5003 | 1664 | nan |
0.0 | 0.7505 | 2496 | nan |
0.0 | 1.0006 | 3328 | nan |
0.0 | 1.2508 | 4160 | nan |
0.0 | 1.5009 | 4992 | nan |
0.0 | 1.7511 | 5824 | nan |
0.0 | 2.0012 | 6656 | nan |
0.0 | 2.2514 | 7488 | nan |
0.0 | 2.5015 | 8320 | nan |
0.0 | 2.7517 | 9152 | nan |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 25
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for CheapsetZero/cbe7acef-a938-46c7-ace1-c90867666d7a
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-1.5B-Instruct