metadata
language:
- th
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:400
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: ไข่ไก่, เนย
sentences:
- ต้มยำซี่โครงหมู สูตรใส่คนอร์
- ไข่คน Scrambled egg
- นมน้ำผึ้งอุ่น
- source_sentence: >-
วัว, พริกแดง, กระเทียม, น้ำปลา, ซีอิ๊วขาว, น้ำตาลทราย, ใบกะเพรา,
น้ำมัน
sentences:
- ข้าวกะเพราเนื้อสับ-ไข่ดาว
- สปาเก็ตตี้ขี้เมาทะเล
- แกงซี่โครงหมูใส่วุ้นเส้น
- source_sentence: >-
แป้งอเนกประสงค์, น้ำตาลทราย, เนยละลาย, เบคกิ้งโซดา, ผงฟู, ผงโกโก้, ไข่ไก่,
นมสด, กลิ่นวนิลา, ท๊อปปิ้ง, ช๊อคโกแลต ,อัลมอนด์
sentences:
- โดนัทจิ๋ว
- จิ้นตุ๊บ
- 'กะเพราเต้าหู้ '
- source_sentence: >-
ปลา, เห็ด, ใบกระเพรา, ผักชีฝรั่ง, มะเขือเทศ, หอมแดง, ข่า, ตะไคร้,
พริกแดง, พริกแห้ง, ใบมะกรูด, มะนาว, น้ำเปล่า, น้ำปลา, น้ำตาล, เกลือ
sentences:
- โจ๊กข้าวโอ๊ต
- กุ้งอบวุ้นเส้น
- ต้มโคล้งปลากรอบ
- source_sentence: นมเปรี้ยว, เยลลี่รวมรสผลไม้
sentences:
- น้ำพริกอ่อง
- ทองหยอด
- ไอศกรีมโยเกิร์ตเยลลี่ปีโป้
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Thai Food Ingredients → Dish Prediction
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: thai food eval
type: thai-food-eval
metrics:
- type: cosine_accuracy@1
value: 0.5510204081632653
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7959183673469388
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8979591836734694
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9591836734693877
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5510204081632653
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26530612244897955
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1795918367346939
name: Cosine Precision@5
- type: cosine_recall@1
value: 0.5510204081632653
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7959183673469388
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8979591836734694
name: Cosine Recall@5
- type: cosine_ndcg@10
value: 0.7617227811022508
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6980158730158731
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6998188498457026
name: Cosine Map@100
Thai Food Ingredients → Dish Prediction
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: th
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("thai-food-mpnet-tuned")
# Run inference
sentences = [
'นมเปรี้ยว, เยลลี่รวมรสผลไม้',
'ไอศกรีมโยเกิร์ตเยลลี่ปีโป้',
'ทองหยอด',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
thai-food-eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.551 |
cosine_accuracy@3 | 0.7959 |
cosine_accuracy@5 | 0.898 |
cosine_accuracy@10 | 0.9592 |
cosine_precision@1 | 0.551 |
cosine_precision@3 | 0.2653 |
cosine_precision@5 | 0.1796 |
cosine_recall@1 | 0.551 |
cosine_recall@3 | 0.7959 |
cosine_recall@5 | 0.898 |
cosine_ndcg@10 | 0.7617 |
cosine_mrr@10 | 0.698 |
cosine_map@100 | 0.6998 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 400 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 400 samples:
anchor positive type string string details - min: 4 tokens
- mean: 44.22 tokens
- max: 105 tokens
- min: 4 tokens
- mean: 9.92 tokens
- max: 24 tokens
- Samples:
anchor positive ผักกระเฉด, กุ้งผ่า, ปลากระป๋อง, พริกสด, หอมแดง, กระชาย, กระปิ, เกลือป่น, น้ำตาล, น้ำปลา, น้ำมะขามเปียก, มะนาว
แกงส้มผักกระเฉด
หมูสามชั้น, น้ำส้มสายชู, เกลือ, น้ำมันงา, กระเทียม, หอมแดง, รากผักชี, เต้าเจี้ยว, ซอสหอยนางรม, น้ำตาล, ซีอิ๊วดำ, น้ำซุป, นมสด, แป้งมัน, งาขาว
ข้าวหมูกรอบ
ซอสถั่วเหลืองจิ้ม, ไข่ไก่, เบคอน, ไส้กรอก, แฮม, ชาร้อน, น้ำสะอาด
ชุดอาหารเช้า
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 49 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 49 samples:
anchor positive type string string details - min: 8 tokens
- mean: 43.39 tokens
- max: 105 tokens
- min: 5 tokens
- mean: 9.39 tokens
- max: 18 tokens
- Samples:
anchor positive เห็ด, กะปิ, น้ำปลา, ตะไคร้, หอมแดง, พริกขี้หนู, พริกแดง, ผักหวาน, ชะอม, ใบแมงลัก, ใบย่านาง, น้ำเปล่า, หน่อไม้
แกงเห็ดผักหวานใส่กะปิ
หมูสามชั้น, พริกไทย, กระเทียม, รากผักชี, อบเชย, ดอกจันทร์, ซีอิ้วขาว, ซีอิ้วดำ, น้ำตาลทราย, น้ำตาลปี๊บ, เกลือ, คนอร์
หมูฮ้อง
สะโพกไก่, เกลือ, พริกไทย, มันฝรั่ง, แครอท, แป้งสาลี, น้ำมัน, เนย, กระเทียม, หอม, ผงปรุงรส, ซอสมะเขือเทศ
สตูไก่ สูตรไม่ใส่เครื่องเทศ
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 24per_device_eval_batch_size
: 24learning_rate
: 5e-06num_train_epochs
: 16warmup_ratio
: 0.1load_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 24per_device_eval_batch_size
: 24per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 16max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | thai-food-eval_cosine_ndcg@10 |
---|---|---|---|---|
0.5882 | 10 | 3.2903 | - | - |
1.0 | 17 | - | 2.3505 | 0.4150 |
1.1765 | 20 | 2.467 | - | - |
1.7647 | 30 | 1.9808 | - | - |
2.0 | 34 | - | 1.5080 | 0.6269 |
2.3529 | 40 | 1.6699 | - | - |
2.9412 | 50 | 1.3974 | - | - |
3.0 | 51 | - | 1.2515 | 0.6827 |
3.5294 | 60 | 1.1846 | - | - |
4.0 | 68 | - | 1.1762 | 0.6735 |
4.1176 | 70 | 1.1183 | - | - |
4.7059 | 80 | 1.001 | - | - |
5.0 | 85 | - | 1.1104 | 0.6995 |
5.2941 | 90 | 0.9919 | - | - |
5.8824 | 100 | 0.8285 | - | - |
6.0 | 102 | - | 1.0806 | 0.7152 |
6.4706 | 110 | 0.7873 | - | - |
7.0 | 119 | - | 1.0573 | 0.7333 |
7.0588 | 120 | 0.7359 | - | - |
7.6471 | 130 | 0.6526 | - | - |
8.0 | 136 | - | 1.0051 | 0.7566 |
8.2353 | 140 | 0.6004 | - | - |
8.8235 | 150 | 0.571 | - | - |
9.0 | 153 | - | 0.9988 | 0.7700 |
9.4118 | 160 | 0.5254 | - | - |
10.0 | 170 | 0.5119 | 1.0087 | 0.7590 |
10.5882 | 180 | 0.492 | - | - |
11.0 | 187 | - | 0.9756 | 0.77 |
11.1765 | 190 | 0.5334 | - | - |
11.7647 | 200 | 0.4395 | - | - |
12.0 | 204 | - | 0.9851 | 0.7707 |
12.3529 | 210 | 0.4362 | - | - |
12.9412 | 220 | 0.3905 | - | - |
13.0 | 221 | - | 1.0020 | 0.7578 |
13.5294 | 230 | 0.4388 | - | - |
14.0 | 238 | - | 0.9994 | 0.7563 |
14.1176 | 240 | 0.4594 | - | - |
14.7059 | 250 | 0.4502 | - | - |
15.0 | 255 | - | 1.0004 | 0.7631 |
15.2941 | 260 | 0.3539 | - | - |
15.8824 | 270 | 0.4144 | - | - |
16.0 | 272 | - | 0.9997 | 0.7617 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.52.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}