distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5071
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7065 1.0 113 1.5003 0.61
1.0785 2.0 226 1.0084 0.69
0.8457 3.0 339 0.7742 0.79
0.6696 4.0 452 0.6197 0.82
0.5859 5.0 565 0.5071 0.87
0.3813 6.0 678 0.5068 0.85
0.4032 7.0 791 0.4872 0.87
0.2352 8.0 904 0.5913 0.83
0.1345 9.0 1017 0.6382 0.84
0.1871 10.0 1130 0.5928 0.87
0.1533 11.0 1243 0.5992 0.86
0.108 12.0 1356 0.6503 0.83
0.0642 13.0 1469 0.6233 0.86
0.0419 14.0 1582 0.6289 0.86
0.0461 15.0 1695 0.6338 0.87

Framework versions

  • Transformers 4.54.1
  • Pytorch 2.9.0.dev20250731+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
7
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Cesar514/distilhubert-gtzan

Finetuned
(511)
this model

Dataset used to train Cesar514/distilhubert-gtzan

Evaluation results