distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5071
- Accuracy: 0.87
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.7065 | 1.0 | 113 | 1.5003 | 0.61 |
1.0785 | 2.0 | 226 | 1.0084 | 0.69 |
0.8457 | 3.0 | 339 | 0.7742 | 0.79 |
0.6696 | 4.0 | 452 | 0.6197 | 0.82 |
0.5859 | 5.0 | 565 | 0.5071 | 0.87 |
0.3813 | 6.0 | 678 | 0.5068 | 0.85 |
0.4032 | 7.0 | 791 | 0.4872 | 0.87 |
0.2352 | 8.0 | 904 | 0.5913 | 0.83 |
0.1345 | 9.0 | 1017 | 0.6382 | 0.84 |
0.1871 | 10.0 | 1130 | 0.5928 | 0.87 |
0.1533 | 11.0 | 1243 | 0.5992 | 0.86 |
0.108 | 12.0 | 1356 | 0.6503 | 0.83 |
0.0642 | 13.0 | 1469 | 0.6233 | 0.86 |
0.0419 | 14.0 | 1582 | 0.6289 | 0.86 |
0.0461 | 15.0 | 1695 | 0.6338 | 0.87 |
Framework versions
- Transformers 4.54.1
- Pytorch 2.9.0.dev20250731+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 7
Model tree for Cesar514/distilhubert-gtzan
Base model
ntu-spml/distilhubert